Skip to main content
Log in

A Meta-analysis of Bacterial Diversity in the Feces of Cattle

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, we conducted a meta-analysis on 16S rRNA gene sequences of bovine fecal origin that are publicly available in the RDP database. A total of 13,663 sequences including 603 isolate sequences were identified in the RDP database (Release 11, Update 1), where 13,447 sequences were assigned to 10 phyla, 17 classes, 28 orders, 59 families, and 110 genera, while the remaining 216 sequences could not be assigned to a known phylum. Firmicutes and Bacteroidetes were the first and the second predominant phyla, respectively. About 41 % of the total sequences could not be assigned to a known genus. The total sequences were assigned to 1252 OTUs at 97 % sequence similarity. A small number of OTUs shared among datasets indicate that fecal bacterial communities of cattle are greatly affected by various factors, specifically diet. This study may guide future studies to further analyze fecal bacterial communities of cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88:3977–3983

    Article  PubMed  CAS  Google Scholar 

  2. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Durso LM, Harhay GP, Smith TP, Bono JL, Desantis TZ, Harhay DM, Andersen GL, Keen JE, Laegreid WW, Clawson ML (2010) Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 76:4858–4862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Durso LM, Wells JE, Harhay GP, Rice WC, Kuehn L, Bono JL, Shackelford S, Wheeler T, Smith TP (2012) Comparison of bacterial communities in faeces of beef cattle fed diets containing corn and wet distillers’ grain with solubles. Lett Appl Microbiol 55:109–114

    Article  PubMed  CAS  Google Scholar 

  6. Gavini F, Delcenserie V, Kopeinig K, Pollinger S, Beerens H, Bonaparte C, Upmann M (2006) Bifidobacterium species isolated from animal feces and from beef and pork meat. J Food Prot 69:871–877

    PubMed  CAS  Google Scholar 

  7. Jeong JY, Park HD, Lee KH, Weon HY, Ka JO (2011) Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing. J Microbiol 49:585–594

    Article  PubMed  Google Scholar 

  8. Kim M, Kim J, Kuehn L, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson AK, Wells JE (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694

    Article  PubMed  CAS  Google Scholar 

  9. Kim M, Morrison M, Yu Z (2011) Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments. Folia Microbiol (Praha) 56:453–458

    Article  CAS  Google Scholar 

  10. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  PubMed  CAS  Google Scholar 

  11. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Morotomi M, Nagai F, Sakon H, Tanaka R (2009) Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol 59:1895–1900

    Article  PubMed  Google Scholar 

  14. Ozutsumi Y, Hayashi H, Sakamoto M, Itabashi H, Benno Y (2005) Culture-independent analysis of fecal microbiota in cattle. Biosci Biotechnol Biochem 69:1793–1797

    Article  PubMed  CAS  Google Scholar 

  15. Patton TG, Scupham AJ, Bearson SM, Carlson SA (2009) Characterization of fecal microbiota from a Salmonella endemic cattle herd as determined by oligonucleotide fingerprinting of rDNA genes. Vet Microbiol 136:285–292

    Article  PubMed  CAS  Google Scholar 

  16. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  PubMed  CAS  Google Scholar 

  17. Rice WC, Galyean ML, Cox SB, Dowd SE, Cole NA (2012) Influence of wet distillers grains diets on beef cattle fecal bacterial community structure. BMC Microbiol 12:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sakamoto M, Benno Y (2006) Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605

    Article  PubMed  CAS  Google Scholar 

  19. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77:2992–3001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Slovakova L, Duskova D, Marounek M (2002) Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bifidobacterium pseudolongum. Lett Appl Microbiol 35:126–130

    Article  PubMed  CAS  Google Scholar 

  21. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    Article  PubMed  CAS  Google Scholar 

  22. Velazquez E, de Miguel T, Poza M, Rivas R, Rossello-Mora R, Villa TG (2004) Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE (2012) Impact of training sets on classification of high-throughput bacterial 16 s rRNA gene surveys. ISME J 6:94–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Whitford MF, Yanke LJ, Forster RJ, Teather RM (2001) Lachnobacterium bovis gen. nov., sp. nov., a novel bacterium isolated from the rumen and faeces of cattle. Int J Syst Evol Microbiol 51:1977–1981

    Article  PubMed  CAS  Google Scholar 

  26. Woese CR, Gutell R, Gupta R, Noller HF (1983) Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80:574–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

No funding sources declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James. E. Wells.

Additional information

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.

USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Wells, J.E. A Meta-analysis of Bacterial Diversity in the Feces of Cattle. Curr Microbiol 72, 145–151 (2016). https://doi.org/10.1007/s00284-015-0931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0931-6

Keywords

Navigation