Skip to main content

Advertisement

Log in

Genome-Wide Expression Profiling of the Response to Linezolid in Mycobacterium tuberculosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is still one of the most common causes of death in the world. The emergence of multidrug-resistant and extensively drug-resistant (XDR-TB) Mycobacterium tuberculosis (M. tuberculosis) strains has increased the importance of searching for alternative targets to develop new antimycobacterial drugs. Linezolid, the first of oxazolidinones, is active in vitro against M. tuberculosis, but the response mechanisms of M. tuberculosis to linezolid are still poorly understood. To reveal the possible mechanism of action of linezolid against M. tuberculosis, commercial oligonucleotide microarrays were used to analyze the genome-wide transcriptional changes triggered by treatment with subinhibitory concentrations of linezolid. Quantitative real-time RT-PCR was performed for selected genes to verify the microarray results. A total of 729 genes were found to be differentially regulated by linezolid. Among these, 318 genes were upregulated, and 411 genes were downregulated. A number of important genes were significantly regulated that are involved in various pathways, such as protein synthesis, sulfite metabolism, and genes involved in the cell envelope and virulence. This genome-wide transcriptomics approach produced the first insights into the response of M. tuberculosis to a linezolid challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2009) Global tuberculosis control: epidemiology, strategy, financing. WHO/HTM/TB, Geneva, p 411

    Google Scholar 

  2. Munsiff SS, Ahuja SD, Li J, Driver CR (2006) Public–private collaboration for multidrug-resistant tuberculosis control in New York City. Int J Tuberc Lung Dis 10:639–648

    PubMed  CAS  Google Scholar 

  3. Moss AR, Alland D, Telzak E, Hewlett D Jr, Sharp V, Chiliade P, LaBombardi V, Kabus D, Hanna B, Palumbo L, Brudney K, Weltman A, Stoeckle K, Chirgwin K, Simberkoff M, Moghazeh S, Eisner W, Lutfey M, Kreiswirth B (1997) A city-wide outbreak of a multiple-drug-resistant strain of Mycobacterium tuberculosis in New York. Int J Tuberc Lung Dis 1:115–121

    PubMed  CAS  Google Scholar 

  4. Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K, Hoffner S, Drobniewski F, Barrera L, van Soolingen D, Boulabhal F, Paramasivan CN, Kam KM, Mitarai S, Nunn P, Raviglione M; Global Project on Anti-Tuberculosis sistance Surveillance (2009) Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Epidemiology of antituberculosis drug resistance 2002-07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet 373(9678):1861–1873

    Google Scholar 

  5. Shinabarger D (1999) Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin Investig Drugs 8:1195–1202

    Article  PubMed  CAS  Google Scholar 

  6. Alcala L, Ruiz-Serrano MJ, Perez-Fernandez Turegano C, Garcia De Viedma D, Diaz-Infantes M, Marin-Arriaza M, Bouza E (2003) In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrob Agents Chemother 47:416–417

    Article  PubMed  CAS  Google Scholar 

  7. Cynamon MH, Klemens SP, Sharpe CA, Chase S (1999) Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 43:1189–1191

    PubMed  CAS  Google Scholar 

  8. Molicotti P, Ortu S, Bua A, Cannas S, Sechi LA, Zanetti S (2006) In vitro efficacy of linezolid on clinical strains of Mycobacterium tuberculosis and other mycobacteria. New Microbiol 29:275–280

    PubMed  CAS  Google Scholar 

  9. Rodriguez JC, Ruiz M, Lopez M, Royo G (2002) In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents 20:464–467

    Article  PubMed  CAS  Google Scholar 

  10. Sood R, Bhadauriya T, Rao M, Gautam R, Malhotra S, Barman TK, Upadhyay DJ, Rattan A (2006) Antimycobacterial activities of oxazolidinones: a review. Infect Disord Drug Targets 6:343–354

    Article  PubMed  CAS  Google Scholar 

  11. Tato M, de la Pedrosa EG, Canton R, Gomez-Garcia I, Fortun J, Martin-Davila P, Baquero F, Gomez-Mampaso E (2006) In vitro activity of linezolid against Mycobacterium tuberculosis complex, including multidrug-resistant Mycobacterium bovis isolates. Int J Antimicrob Agents 28:75–78

    Article  PubMed  CAS  Google Scholar 

  12. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40:839–845

    PubMed  CAS  Google Scholar 

  13. Moellering RC (2003) Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 138:135–142

    PubMed  CAS  Google Scholar 

  14. Bozdogan B, Appelbaum PC (2004) Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents 23:113–119

    Article  PubMed  CAS  Google Scholar 

  15. Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q (2007) Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51(1):144–153

    Article  PubMed  CAS  Google Scholar 

  16. Yu L, Xiang H, Fan J, Wang D, Yang F, Guo N, Jin Q, Deng X (2008) Global transcriptional response of Staphylococcus aureus to rhein, a natural plant product. J Biotechnol 135(3):304–308

    Article  PubMed  CAS  Google Scholar 

  17. Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):219–229

    Article  PubMed  CAS  Google Scholar 

  18. Liang J, Zeng F, Guo A, Liu L, Guo N, Li L, Jin J, Wu X, Liu M, Zhao D, Li Y, Jin Q, Yu L (2011) Microarray analysis of the chelerythrine-induced transcriptome of Mycobacterium tuberculosis. Curr Microbiol 62(4):1200–1208

    Article  PubMed  CAS  Google Scholar 

  19. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid low-technology MIC determination with clinical, Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36(2):362–366

    PubMed  CAS  Google Scholar 

  20. Jiménez-Arellanes A, Meckes M, Ramírez R, Torres J, Luna-Herrera J (2003) Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases. Phytother Res 17(8):903–908

    Article  PubMed  Google Scholar 

  21. Slayden RA, Knudson DL, Belisle JT (2006) Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology 152(Pt 6):1789–1797

    Article  PubMed  CAS  Google Scholar 

  22. Folster JP, Johnson PJ, Jackson L, Dhulipali V, Dyer DW, Shafer WM (2009) MtrR Modulates rpoH Expression and Levels of Antimicrobial Resistance in Neisseria gonorrhoeae. J Bacteriol 191(1):287–297

    Article  PubMed  CAS  Google Scholar 

  23. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  PubMed  CAS  Google Scholar 

  24. Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616

    Article  PubMed  CAS  Google Scholar 

  25. Raman S, Hazra R, Dascher CC, Husson RN (2004) Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186(19):6605–6616

    Article  PubMed  CAS  Google Scholar 

  26. Hatzios SK, Schelle MW, Holsclaw CM, Behrens CR, Botyanszki Z, Lin FL, Carlson BL, Kumar P, Leary JA, Bertozzi CR (2009) PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 284(19):12745–12751

    Article  PubMed  CAS  Google Scholar 

  27. Bhatt K, Gurcha SS, Bhatt A, Besra GS, Jacobs WR Jr (2007) Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology 153(Pt 2):513–520

    Article  PubMed  CAS  Google Scholar 

  28. Sirakova TD, Thirumala AK, Dubey VS, Sprecher H, Kolattukudy PE (2001) The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 276:16833–16839

    Article  PubMed  CAS  Google Scholar 

  29. Kumar P, Schelle MW, Jain M, Lin FL, Petzold CJ, Leavell MD, Leary JA, Cox JS, Bertozzi CR (2007) PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci USA 104(27):11221–11226

    Article  PubMed  CAS  Google Scholar 

  30. Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR, Cox JS (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100(10):6121–6126

    Article  PubMed  CAS  Google Scholar 

  31. Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE (2006) Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152:2717–2725

    Article  PubMed  CAS  Google Scholar 

  32. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4(6):e6077

    Article  PubMed  CAS  Google Scholar 

  33. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763

    Article  PubMed  CAS  Google Scholar 

  34. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704

    Article  PubMed  CAS  Google Scholar 

  35. Golby P, Hatch KA, Bacon J, Cooney R, Riley P, Allnutt J, Hinds J, Nunez J, Marsh PD, Hewinson RG, Gordon SV (2007) Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 153(Pt 10):3323–3336

    Article  PubMed  CAS  Google Scholar 

  36. Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184:4025–4032

    Article  PubMed  CAS  Google Scholar 

  37. Provvedi R, Boldrin F, Falciani F, Palù G, Manganelli R (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 155(Pt 4):1093–1102

    Article  PubMed  CAS  Google Scholar 

  38. Drumm JE, Mi K, Bilder P, Sun M, Lim J, Bielefeldt-Ohmann H, Basaraba R, So M, Zhu G, Tufariello JM, Izzo AA, Orme IM, Almo SC, Leyh TS, Chan J (2009) Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-binding: requirement for establishing chronic persistent infection. PLoS Pathog 5(5):e1000460

    Article  PubMed  CAS  Google Scholar 

  39. O’Toole R, Williams HD (2003) Universal stress proteins and Mycobacterium tuberculosis. Res Microbiol 154:387–392

    Article  PubMed  CAS  Google Scholar 

  40. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854

    Article  PubMed  CAS  Google Scholar 

  41. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh FK, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 5(2):e1000289

    Article  PubMed  CAS  Google Scholar 

  42. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276(23):19845–19854

    Article  PubMed  CAS  Google Scholar 

  43. Pérez E, Constant P, Lemassu A, Laval F, Daffé M, Guilhot C (2004) Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem 279(41):42574–42583

    Article  PubMed  CAS  Google Scholar 

  44. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367(Pt 1):279–285

    Article  PubMed  CAS  Google Scholar 

  45. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49(1):1–32

    PubMed  CAS  Google Scholar 

  46. Rousseau C, Sirakova TD, Dubey VS, Bordat Y, Kolattukudy PE, Gicquel B, Jackson M (2003) Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149(Pt 7):1837–1847

    Article  PubMed  CAS  Google Scholar 

  47. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267

    Article  PubMed  CAS  Google Scholar 

  48. Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83

    Article  PubMed  CAS  Google Scholar 

  49. Domenech P, Reed MB, Barry CE 3rd (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501

    Article  PubMed  CAS  Google Scholar 

  50. Grassi M, Volpe E, Colizzi V, Mariani F (2006) An improved, real-time PCR assay for the detection of GC-rich and low abundance templates of Mycobacterium tuberculosis. J Microbiol Methods 64(3):406–410

    Article  PubMed  CAS  Google Scholar 

  51. Papavinasasundaram KG, Chan B, Chung JH, Colston MJ, Davis EO, Av-Gay Y (2005) Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187(16):5751–5760

    Article  PubMed  CAS  Google Scholar 

  52. Ye H, Liu Z, Guo A, Liang J, Guo N, Zeng F, Liu L, Li L, Jin J, Wu X, Li Y, Liu M, Jin Q, Yu L (2011) Global transcriptional profiles of Mycobacterium tuberculosis treated with plumbagin. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0689-3

Download references

Acknowledgments

Financial supports for this work came from the Doctoral Program of Higher Education (SRFDP) (No. 200801831051), the Specialized Research Fund for Important National Science & Technology Specific Projects (2012ZX10003002-001), the Fund for Science and Technology Development of the Jilin Province, China (No. 20080565), National Nature Science Foundation of China (No. 31172364), Shenzhen biological special funds for industrial development aid key basic research project (JC201005280643A), and the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yu.

Additional information

Junchao Liang, Xudong Tang, Na Guo, Kaiyu Zhang, Aizhen Guo, Xiuping Wu, Xuelin Wang, and Zhenhong Guan equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Tang, X., Guo, N. et al. Genome-Wide Expression Profiling of the Response to Linezolid in Mycobacterium tuberculosis . Curr Microbiol 64, 530–538 (2012). https://doi.org/10.1007/s00284-012-0104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0104-9

Keywords

Navigation