Skip to main content
Log in

Survey of Wolbachia and Its Phage WO in the Uzifly Exorista sorbillans (Diptera: Tachinidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Wolbachia are cytoplasmically inherited alpha-proteobacteria well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts they infect. Despite their obligate intracellular lifestyle which usually protects bacteria from phage infection, Wolbachia harbor a widespread temperate phage called WO. Evidences of horizontal phage transfers indicate that this phage could promote genetic exchanges between strains leading to evolutionary changes in the genomes of Wolbachia, and could be involved in the phenotypes these bacteria induced. In this study, we report the survey of Wolbachia and WO phage infections in 20 populations of the Uzifly Exorista sorbillans, a tachinid endoparasite of silkworm Bombyx mori, collected from different geographic regions of India. Previous studies demonstrated that Wolbachia is associated with positive reproductive fitness effects in this species. Polymerase chain reaction using the ftsZ gene encoding for a Wolbachia cell division protein and the orf7 capsid protein gene of the phage showed that all flies checked were infected by Wolbachia and its phage WO. Phylogenetic analyses based on the Wolbachia surface protein gene revealed 100% of double infections by the arthropod supergroups A and B. These results can serve as a valuable basis for understanding the evolution of Wolbachia bacteria and may provide information about the dynamics of Wolbachia–host associations. This knowledge could be exploited for the use of Wolbachia for effective control strategies of the Uzifly, a serious menace of the silkworm B. mori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23:437–449

    Article  PubMed  CAS  Google Scholar 

  2. Bordenstein SR, Reznikoff WS (2005) Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol 3:688–699

    Article  PubMed  CAS  Google Scholar 

  3. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991

    Article  PubMed  CAS  Google Scholar 

  4. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354

    Article  PubMed  CAS  Google Scholar 

  5. Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Boulétreau M (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 12:147–153

    Article  Google Scholar 

  6. Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, Boulétreau M, Vavre F (2007) A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol 24:427–435

    Article  PubMed  CAS  Google Scholar 

  7. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  8. Holden PR, Brookfield JFY, Jones P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240:213–220

    Article  PubMed  CAS  Google Scholar 

  9. Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181

    Article  PubMed  CAS  Google Scholar 

  10. Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346

    PubMed  CAS  Google Scholar 

  11. Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497

    PubMed  CAS  Google Scholar 

  12. Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H (2001) Bacteriophage WO and virus like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 283:1099–1104

    Article  PubMed  CAS  Google Scholar 

  13. Miao EA, Miller SI (1999) Bacteriophages in the evolution of pathogen host interactions. Proc Natl Acad Sci USA 96:9452–9454

    Article  PubMed  CAS  Google Scholar 

  14. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Ann Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  15. Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  PubMed  CAS  Google Scholar 

  16. Perrot-Minnot MJ, Guo LR, Werren JH (1996) Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics 143:961–972

    PubMed  CAS  Google Scholar 

  17. Puttaraju HP, Prakash BM (2005) Effects of Wolbachia in the uzifly, Exorista sorbillans, a parasitoid of silkworm, Bombyx mori. J Insect Sci 5(30):1–7

    Google Scholar 

  18. Ronquist F, Huelsenbeck JP (2003) MR BAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  19. Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Nat Acad Sci USA 92:6389–6393

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook J, Fritsch EF, Miniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  21. Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropods reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  22. Taylor MJ, Bandi C, Hoerauf A (2005) Wolbachia bacterial endosymbiont of filarial nematodes. Adv Parasitol 60:245–284

    Article  PubMed  Google Scholar 

  23. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B 261:55–63

    Article  CAS  Google Scholar 

  24. Zhou W, Rousset F, O’Neill S (1998) Phylogenetic and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265:509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this study was provided by grants from DST, Government of India to HPP (SR/SO/AS-77/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosagavi Puttegowda Puttaraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guruprasad, N.M., Mouton, L., Sumithra et al. Survey of Wolbachia and Its Phage WO in the Uzifly Exorista sorbillans (Diptera: Tachinidae). Curr Microbiol 63, 267–272 (2011). https://doi.org/10.1007/s00284-011-9973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9973-6

Keywords

Navigation