Skip to main content

Advertisement

Log in

Coregulation of Gene Expression by Sigma Factors RpoE and RpoS in Salmonella enterica Serovar Typhi During Hyperosmotic Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a food-borne disease that is prevalent worldwide, most particularly in developing countries. RNA polymerase sigma factors RpoE (σE) and RpoS (σS) govern transcription initiation of two sets of genes in Escherichia and Salmonella. It was previously suggested that some genes might be coregulated by RpoE and RpoS in Salmonella under conditions of environmental stress, but experimental evidence has been lacking. We therefore constructed rpoS deletion (ΔrpoS) and double rpoE/rpoS deletion (ΔrpoE/ΔrpoS) mutants of S. Typhi and compared their growth properties with an rpoE mutant (ΔrpoE) and wild-type strains under conditions of hyperosmotic stress. We report that the ΔrpoE, ΔrpoS, and ΔrpoE/ΔrpoS strains grew more slowly under hyperosmotic stress conditions than the wild-type strain, and the ΔrpoE/ΔrpoS strain grew most slowly. The global transcriptional profiles of ΔrpoE, ΔrpoS, ΔrpoE/ΔrpoS after 30 min of hyperosmotic stress were investigated using a Salmonella genomic DNA microarray. The results of microarray indicated that the expression levels of 38 genes were markedly reduced during hyperosmotic stress in the double mutant ΔrpoE/ΔrpoS strain, but expression levels were not significantly affected by single ΔrpoE or ΔrpoS mutations. This was confirmed for several key genes by qRT-PCR. This study therefore indicated crosstalk between sigma factors RpoE and RpoS in S. Typhi under hyperosmotic conditions and provides new insights into the regulatory networks of S. Typhi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  PubMed  CAS  Google Scholar 

  2. Alba BM, Leeds JA, Onufryk C et al (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168

    Article  PubMed  CAS  Google Scholar 

  3. Balaji B, O’Connor K, Lucas JR et al (2005) Timing of induction of osmotically controlled genes in Salmonella enterica Serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl Environ Microbiol 71:8273–8283

    Article  PubMed  CAS  Google Scholar 

  4. Bouvier J, Gordia S, Kampmann G et al (1998) Interplay between global regulators of Escherichia coli: effect of RpoS, Lrp and H-NS on transcription of the gene osmC. Mol Microbiol 28:971–980

    Article  PubMed  CAS  Google Scholar 

  5. Coynault C, Robbe-Saule V, Norel F (1996) Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (sigma S) regulon. Mol Microbiol 22:149–160

    Article  PubMed  CAS  Google Scholar 

  6. Daniel MS, Karsten H, Michael SL, Charles JD (2009) Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet 5:e1000671

    Article  Google Scholar 

  7. Davalos-Garcia M, Conter A, Toesca I et al (2001) Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol 183:5870–5876

    Article  PubMed  CAS  Google Scholar 

  8. Du H, Sheng X, Zhang H et al (2011) RpoE may promote flagellar gene expression in Salmonella enterica serovar Typhi under hyperosmotic stress. Curr Microbiol 62:492–500

    Article  PubMed  CAS  Google Scholar 

  9. Everest P, Wain J, Roberts M et al (2001) The molecular mechanisms of severe typhoid fever. Trends Microbiol 9:316–320

    Article  PubMed  CAS  Google Scholar 

  10. Gordia S, Gutierrez C (1996) Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol Microbiol 19:729–736

    Article  PubMed  CAS  Google Scholar 

  11. Grigorova IL, Chaba R, Zhong HJ et al (2004) Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18:2686–2697

    Article  PubMed  CAS  Google Scholar 

  12. Gutierrez C, Devedjian JC (1991) Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol 220:959–973

    Article  PubMed  CAS  Google Scholar 

  13. Han Y, Zhou D, Pang X et al (2005) Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Res Microbiol 156:403–415

    Article  PubMed  CAS  Google Scholar 

  14. Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893

    Article  PubMed  CAS  Google Scholar 

  15. Hengge-Aronis R, Klein W, Lange R et al (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924

    PubMed  CAS  Google Scholar 

  16. Hengge-Aronis R, Lange R, Henneberg N, Fischer D (1993) Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 175:259–265

    PubMed  CAS  Google Scholar 

  17. House D, Bishop A, Parry C et al (2001) Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis 14:573–578

    PubMed  CAS  Google Scholar 

  18. Huang X, le Phung V, Dejsirilert S et al (2004) Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 234:239–246

    Article  PubMed  CAS  Google Scholar 

  19. Huang X, Xu H, Sun X et al (2007) Genome-wide scan of the gene expression kinetics of Salmonella enterica Serovar Typhi during hyperosmotic stress. Int J Mol Sci 8:116–135

    Article  CAS  Google Scholar 

  20. Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561

    Article  PubMed  CAS  Google Scholar 

  21. Jung JU, Gutierrez C, Martin F et al (1990) Transcription of osmB, a gene encoding an Escherichia coli lipoprotein, is regulated by dual signals: osmotic stress and stationary phase. J Biol Chem 265:10574–10581

    PubMed  CAS  Google Scholar 

  22. Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR). J Bacteriol 174:889–898

    PubMed  CAS  Google Scholar 

  23. Lin ECC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578

    Article  PubMed  CAS  Google Scholar 

  24. McCann MP, Kidwell JP, Matin A (1991) The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194

    PubMed  CAS  Google Scholar 

  25. Miticka H, Rowley G, Rezuchova B et al (2003) Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor sigmaE in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226:307–314

    Article  PubMed  CAS  Google Scholar 

  26. Nickerson CA, Curtiss R (1997) Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect Immun 65:1814–1823

    PubMed  CAS  Google Scholar 

  27. Rhodius VA, Suh WC, Nonaka G et al (2006) Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4:e2

    Article  PubMed  Google Scholar 

  28. Rowley G, Spector M, Kormanec J, Roberts M (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383–394

    Article  PubMed  CAS  Google Scholar 

  29. Ruberg S, Tian ZX, Krol E et al (2003) Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol 106:255–268

    Article  PubMed  CAS  Google Scholar 

  30. Schweizer H, Argast M, Boos W (1982) Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon. J Bacteriol 150:1154–1163

    PubMed  CAS  Google Scholar 

  31. Sheng X, Huang X, Mao L et al (2009) Preparation of Salmonella enterica Serovar Typhi genomic DNA microarrays for gene expression profiling analysis. Prog Biochem Biophys 36:306–312

    Google Scholar 

  32. Spector MP, Garcia del Portillo F, Bearson SM et al (1999) The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145:3035–3045

    Article  PubMed  CAS  Google Scholar 

  33. Stephanie JC, Wenjing J, Jeffrey AC (2006) Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth. Microbiology 152:2091–2100

    Article  Google Scholar 

  34. Testerman TL, Vazquez-Torres A, Xu Y et al (2002) The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43:771–782

    Article  PubMed  CAS  Google Scholar 

  35. Xu S, Zhang H, Sheng X et al (2008) Transcriptional expression of fljB:z66, a flagellin gene located on a novel linear plasmid of Salmonella enterica serovar Typhi under environmental stresses. New Microbiol 31:241–247

    PubMed  CAS  Google Scholar 

  36. Yang K, Wang M, Metcalf WW (2009) Uptake of glycerol-2-phosphate via the ugp-encoded transporter in Escherichia coli K-12. J Bacteriol 191:4667–4670

    Article  PubMed  CAS  Google Scholar 

  37. Yim HH, Brems RL, Villarejo M (1994) Molecular characterization of the promoter of osmY, an rpoS-dependent gene. J Bacteriol 176:100–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Ezaki (Gifu University) for bacterial strains and continuous support. This work was supported by National Natural Science Foundation of China (30870095), National Special Scientific Program (2008ZX10004-009), Professional Research Foundation for Advanced Talents of Jiangsu University (No. 10JDG044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Wang, M., Luo, Z. et al. Coregulation of Gene Expression by Sigma Factors RpoE and RpoS in Salmonella enterica Serovar Typhi During Hyperosmotic Stress. Curr Microbiol 62, 1483–1489 (2011). https://doi.org/10.1007/s00284-011-9890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9890-8

Keywords

Navigation