Skip to main content
Log in

Subtilase Genes Diversity in the Biogas Digester Microbiota

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Biogas digesters contain microbial assemblages that process a mass of extracellular polymeric substances from animal manure and domestic wastewater; however, due to the limitation of available technology in cultivation of majority of the micro-organisms in biogas digesters, the enzymatic potential of these microbial communities remains largely unexplored. In this study, to evaluate subtilase gene diversity in a biogas digester, the partial sequences of the gene were directly amplified from the metagenomic DNA by using consensus-degenerate primers. The desired PCR products were cloned into pGEM-T Easy vector, and thirty positive clones were chose for Polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analysis, from which thirteen distinguished patterns were obtained and then sequenced. Phylogenetic analysis showed that ten out of the thirteen sequences were related to the subtilase genes in GenBank and were grouped into three families of the subtilases superfamily. The nucleotide sequences analysis through BLAST search revealed that none of the partial genes the authors isolated showed significant similarity against the non-redundant Nucleotide database of NCBI. Meanwhile, the deduced amino acid sequences of ten partial subtilase genes showed moderate identities to the previously identified sequences in GenBank, with a range from 39 to 61%. Collectively, the data indicate that there is a great diversity of subtilase genes in the biogas digester; and may be a rich reservoir for novel subtilase genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acevedo JP, Reyes F, Parra LP et al (2008) Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol 133:277–286

    Article  PubMed  CAS  Google Scholar 

  2. Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  3. Chen X, Xie B, Lu J et al (2007) A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: catalytic and structural properties of deseasin MCP-01. Microbiology 153:2116–2125

    Article  PubMed  CAS  Google Scholar 

  4. Chen Y, Yang GH, Sandra S et al (2010) Household biogas use in rural China: a study of opportunities and constraints. Renew Sust Energ Rev 1:545–549

    Article  Google Scholar 

  5. Cheng G, Zhao P, Tang X et al (2009) Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF. Microbiology 155:3661–3672

    Article  PubMed  CAS  Google Scholar 

  6. Cheng XJ, Qiu TL, Wang M et al (2010) Screening of microbial community in biogas fermentation under low temperature and construction of its metagenome library. China biotechnol 30:50–55

    Google Scholar 

  7. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources—an introduction. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Don RH, Cox PT, Wainwright BJ et al (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  9. Ekici ÖD, Paetzel M, Dalbey RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17:2023–2037

    Article  PubMed  CAS  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  11. Ferrer M, Martínez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593

    Article  PubMed  CAS  Google Scholar 

  12. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbio Biotechnol 59:15–32

    Article  CAS  Google Scholar 

  13. Harmsen HJM, Van Kuijk BLM, Plugge CM et al (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  PubMed  CAS  Google Scholar 

  14. Hill DT, Taylor SE, Grift TE (2001) Simulation of low temperature anaerobic digestion of dairy and swine manure. Bioresour Technol 78:127–131

    Article  PubMed  CAS  Google Scholar 

  15. Kindaichi T, Ito T, Okabe S (2004) Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:1641–1650

    Article  PubMed  CAS  Google Scholar 

  16. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protocol 3:1452–1456

    Article  CAS  Google Scholar 

  17. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  18. McKeown RM, Scully C, Enright A-M et al (2009) Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. ISME J 11:1231–1242

    Article  Google Scholar 

  19. Miyamoto K, Tsujibo H, Nukui E et al (2002) Isolation and characterization of the genes encoding two metalloproteases (MprI and MprII) from a Marine Bacterium, Alteromonas sp. Strain O-7. Biosci Biotechnol Biochem 66:416–421

    Article  PubMed  CAS  Google Scholar 

  20. Miyazaki M, Nogi Y, Usami R et al (2006) Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Microbiol 56:1607–1613

    Article  PubMed  CAS  Google Scholar 

  21. Møller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485–495

    Article  Google Scholar 

  22. Ollivier BM, Mah RA, Ferguson TJ et al (1985) Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst Bacteriol 35:425–428

    Article  CAS  Google Scholar 

  23. Polgár L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62:2161–2172

    Article  PubMed  Google Scholar 

  24. Rainey FA, Stackebrandt E (1993) Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus(Ben-Bassat and Zeikus 1981) comb. nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyticus(Ollivier et al. 1985) comb. nov. Int J Syst Bacteriol 43:857–859

    Article  Google Scholar 

  25. Ramos C, Grilo A, Sousa S et al (2010) A new methodology combining PCR, cloning, and sequencing of clones discriminated by RFLP for the study of microbial populations: application to an UASB reactor sample. Appl Microbiol Biotechnol 85:801–806

    Article  PubMed  CAS  Google Scholar 

  26. Raunkjær K, Hvitved-Jacobsen T, Nielsen PH (1994) Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res 28:251–262

    Article  Google Scholar 

  27. Ravena RPJM, Gregersenb KH (2007) Biogas plants in Denmark: successes and setbacks. Renew Sust Energ Rev 1:116–132

    Article  Google Scholar 

  28. Riviere D, Desvignes V, Pelletier E et al (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 6:700–714

    Article  Google Scholar 

  29. Safley LM Jr, Westerman PW (1994) Low-temperature digestion of dairy and swine manure. Bioresour Technol 47:165–171

    Article  CAS  Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  31. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  32. Siezen RJ, Renckens B, Boekhorst J (2007) Evolution of prokaryotic subtilases: genome-wide analysis reveals novel subfamilies with different catalytic residues. Protein Struct Funct Bioinf 67:681–694

    Article  CAS  Google Scholar 

  33. Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  34. Sokolova TG, Kostrikina NA, Chernyh NA et al (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073

    Article  PubMed  CAS  Google Scholar 

  35. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  36. Yoon J, Matsuo Y, Adachi K et al (2008) Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 58:998–1007

    Article  PubMed  Google Scholar 

  37. Zhou J, Bruns M, Tiedje J (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers of this article for their careful review, constructive suggestions and language improving. The authors wish to thank Wen-jun Shen for her help in English correcting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguang Sun or Junlian Gao.

Additional information

This study was supported by the Key Program of Beijing Municipal Natural Science Foundation (no. 5081001).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Gao, M., Wang, M. et al. Subtilase Genes Diversity in the Biogas Digester Microbiota. Curr Microbiol 62, 1542–1547 (2011). https://doi.org/10.1007/s00284-011-9876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9876-6

Keywords

Navigation