Skip to main content
Log in

The Intestinal Bacterial Community in the Food Waste-Reducing Larvae of Hermetia illucens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836

    Article  PubMed  Google Scholar 

  2. Bradley SW, Sheppard DC (1984) House fly oviposition inhibition by larvae of Hermetia illucens, the black soldier fly. J Chem Ecol 10:853–859

    Article  Google Scholar 

  3. Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  PubMed  CAS  Google Scholar 

  4. Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  5. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocelluloses by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  6. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  PubMed  CAS  Google Scholar 

  7. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  8. Chun J, Kim KY, Lee JH, Choi Y (2010) The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencing. BMC Microbiol 10:101

    Article  PubMed  Google Scholar 

  9. Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4:e6669

    Article  PubMed  Google Scholar 

  10. Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27:603–610

    Article  PubMed  CAS  Google Scholar 

  11. Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  PubMed  CAS  Google Scholar 

  12. Durand L, Zbinden M, Cueff-Gauchard V, Duperron S, Roussel EG, Shillito B, Cambon-Bonavita MA (2010) Microbial diversity associated with the hydrothermal shrimp Rimicaris exoculata gut and occurrence of a resident microbial community. FEMS Microbiol Ecol 71:291–303

    Article  PubMed  CAS  Google Scholar 

  13. Erickson MC, Islam M, Sheppard C, Liao J, Doyle MP (2004) Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J Food Prot 67:685–690

    PubMed  Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  15. Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415

    Article  PubMed  CAS  Google Scholar 

  16. Hongoh Y (2009) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:1145–1151

    Article  Google Scholar 

  17. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  PubMed  CAS  Google Scholar 

  18. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  19. Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  20. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  PubMed  CAS  Google Scholar 

  21. Jung YJ, Jung D, Kim JY, Zo YG, Yim JH, Lee H, Ahn TS (2009) Distribution of bacterial decomposers in lake Khuvsgul, Mongolia. Korean J Microbiol 45:119–125 (Korean)

    Google Scholar 

  22. Kim JG, Choi YC, Choi JY, Kim WT, Jeong GS, Park KH, Hwang SJ (2008) Ecology of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) in Korea. Korean J Appl Entomol 47:337–343 (Korean)

    Google Scholar 

  23. Kim BS, Kim BK, Lee JH, Kim M, Lim YW, Chun J (2008) Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. J Microbiol 46:357–363

    Article  PubMed  CAS  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  25. Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73:2561–2567

    Article  PubMed  CAS  Google Scholar 

  26. Kudo T, Ohkuma M, Moriya S, Noda S, Ohtoko K (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:155–161

    Article  PubMed  CAS  Google Scholar 

  27. Lee HK, Ahn MJ, Kwak SH, Song WH, Jeong BC (2003) Purification and characterization of cold active lipase from psychotropic Aeromonas sp. LPB 4. J Microbiol 41:22–27

    CAS  Google Scholar 

  28. Liu Q, Tomberlin JK, Brady JA, Sanford MR, Yu Z (2008) Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environment 37:1525–1530

    Google Scholar 

  29. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    Article  PubMed  CAS  Google Scholar 

  30. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  31. Park DS, Oh HW, Jeong WJ, Kim H, Park HY, Bae KS (2007) A culture-based study of the bacterial communities within the guts of nine Longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J Microbiol 45:394–401

    PubMed  CAS  Google Scholar 

  32. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  33. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  34. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS, Ryu JH, Kim SH, Lee WJ, Bae JW (2008) Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 74:6171–6177

    Article  PubMed  CAS  Google Scholar 

  35. Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16

    Article  PubMed  CAS  Google Scholar 

  36. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites. Appl Environ Microbiol 69:6007–6017

    Article  PubMed  CAS  Google Scholar 

  37. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024

    Article  PubMed  CAS  Google Scholar 

  38. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    Article  PubMed  CAS  Google Scholar 

  39. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    Article  PubMed  CAS  Google Scholar 

  40. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  41. Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  PubMed  CAS  Google Scholar 

  42. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  43. Teather RM, Wood PJ (1982) Use of Congo red polysaccharide interactions complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59–74

    Google Scholar 

  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  45. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  46. Yu H, Wang Z, Liu L, Xia Y, Cao Y, Yin Y (2008) Analysis of the intestinal microflora in Hepialus gonggaensis larvae using 16S rRNA sequences. Curr Microbiol 56:391–396

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Rural Development Administration, Korea (PJ006893). H. Jeon was supported by a graduate school scholarship from Kyung Hee University. Pyrosequencing data were analysed by the Chun Laboratory at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, H., Park, S., Choi, J. et al. The Intestinal Bacterial Community in the Food Waste-Reducing Larvae of Hermetia illucens . Curr Microbiol 62, 1390–1399 (2011). https://doi.org/10.1007/s00284-011-9874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9874-8

Keywords

Navigation