Skip to main content
Log in

LasR Receptor for Detection of Long-Chain Quorum-Sensing Signals: Identification of N-Acyl-homoserine Lactones Encoded by the avsI Locus of Agrobacterium vitis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bottomley MJ, Muraglia E, Bazzo R, Carfi A (2007) Molecular insight into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bond to its autoinducer. J Biol Chem 282:13592–13600

    Article  CAS  PubMed  Google Scholar 

  2. Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37:58–80

    Article  Google Scholar 

  3. Cataldi RI, Gianco G, Palazzo L, Quaranta V (2007) Occurrence of N-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatograph-mass spectrometry. Anal Biochem 361:226–235

    Article  CAS  PubMed  Google Scholar 

  4. Eberhard A, Schineller JB (2000) Chemical synthesis of bacterial autoinducers and analogs. In: Ziegler MM, Baldwin TO (eds) Methods in enzymology, vol 305. Academic Press, New York, pp 301–315

    Google Scholar 

  5. Farrand SK, Qin Y, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol 358:452–484

    Article  CAS  PubMed  Google Scholar 

  6. Fuqua C, Winans S (1999) Signal generation in autoinduction systems: synthesis of acylated homoserine lactones by LuxI-type proteins. In: Dunny GM, Winans SC (eds) Cell-cell signaling in bacteria. ASM Press, Washington, DC, pp 211–230

    Google Scholar 

  7. Gan HM, Buckley L, Szegedi E, Hudson AO, Savka MA (2009) Identification of an rsh gene from a Novosphingobium sp. necessary for quorum-sensing signal accumulation. J Bacteriol 191:2551–2560

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing Rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  CAS  PubMed  Google Scholar 

  9. Gould TA, Schweizer HP, Churchill MEA (2004) Structure of the Pseudomonas aeruginosa acyl-homoserine lactone synthase LasI. Mol Microbiol 53:1135–1146

    Article  CAS  PubMed  Google Scholar 

  10. Gould TA, Herman J, Krank J, Murphy RC, Cook DM, Churchill MEA (2006) Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188:773–783

    Article  CAS  PubMed  Google Scholar 

  11. Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173–2183

    Article  CAS  PubMed  Google Scholar 

  12. Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR homology avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 187:185–192

    Article  CAS  PubMed  Google Scholar 

  13. Herlache TC, Zhang HS, Reid CL, Carle S, Zheng D, Basaran P, Thanker M, Burr AT, Burr TJ (2001) Mutations that affect Agrobacterium vitis-induced grape necrosis also alter its ability to cause a hypersensitive response on tobacco. Phytopathology 91:966–972

    Article  CAS  PubMed  Google Scholar 

  14. Kirwan JP, Gould TA, Schweizer HP, Bearden SW, Murphy RC, Churchill MEA (2006) Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI. J Bacteriol 188:784–788

    Article  CAS  PubMed  Google Scholar 

  15. Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, Graeber L, Szewzyk U, Konig GM (2007) A marine mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactones. Appl Environ Microbiol 73:3587–3594

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Gronquist MR, Hao G, Holden MR, Eberhard A, Scott RA, Savka MA, Szegedi E, Sule S et al (2006) Chromosome and plasmid-encoded N-acyl-homoserine lactones produced by Agrobacterium vitis wild type and mutants that differ in their interactions with grape and tobacco. Physiol Mol Plant Pathol 67:284–290

    Article  Google Scholar 

  17. Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl-homoserine lactones. Appl Environ Microbiol 70:3715–3723

    Article  CAS  PubMed  Google Scholar 

  18. Llamas I, Quesada E, Marinez-Canovas MJ, Gronquist M, Eberhard A, Gonzalez JE (2005) Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the expolysaccharide-producing species of Halomonas. Extremophiles 9:333–341

    Article  CAS  PubMed  Google Scholar 

  19. Loh J, Pierson EA, Pierson LS, Stacy S, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  20. Lowe N, Gan HM, Chakravartty V, Scott R, Szegedi E, Burr TJ, Savka MA (2009) Quorum-sensing signal production by Agrobacterium vitis strains and their tumor-inducing and tartrate-catabolic plasmids. FEMS Microbiol Lett 296:102–109

    Article  CAS  PubMed  Google Scholar 

  21. Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl-homoserine lactones. J Bacteriol 184:5686–5695

    Article  CAS  PubMed  Google Scholar 

  22. McLafferty FW (1966) Interpretation of mass spectra an introduction. W. A. Benjamin, Reading

    Google Scholar 

  23. Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulation role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635

    Article  CAS  PubMed  Google Scholar 

  24. Ortori CA, Atkinson S, Chhabra SR, Camara M, Williams P, Barrett DA (2006) Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511

    Article  PubMed  Google Scholar 

  25. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Psuedomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197–201

    Article  CAS  PubMed  Google Scholar 

  26. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 6:602–609

    Article  Google Scholar 

  27. Schaefer AL, Taylor TA, Beatty JT, Greenberg EP (2002) Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 184:6515–6521

    Article  CAS  PubMed  Google Scholar 

  28. Scott RA, Weil J, Le PT, Williams P, Fray RG, von Bodman SB, Savka MA (2006) Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllsphere, rhizosphere and soil. Mol Plant-Microbe Interact 19:227–239

    Article  CAS  PubMed  Google Scholar 

  29. Shaphorst JL, van Syl FGH, Strijdom BW, Groenwold ZE (1985) Agrocin-producing pathogenic and nonpathogenic biotype-3 strains of Agrobacterium tumefaciens active against biotype-3 pathogens. Curr Microbiol 12:45–52

    Article  Google Scholar 

  30. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041

    Article  CAS  PubMed  Google Scholar 

  31. Smith S, Wang J-H, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N et al (2006) Variations of a theme: diverse N-acyl-homoserine lactone-mediated quorum sensing mechanisms in Gram-negative bacteria. Sci Prog 89:167–211

    Article  CAS  PubMed  Google Scholar 

  32. Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M et al (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  Google Scholar 

  33. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562

    CAS  PubMed  Google Scholar 

  35. Szegedi E, Czakó M, Otten L, Koncz CS (1988) Opines in crown gall tumors induced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Pathol 32:237–247

    Article  CAS  Google Scholar 

  36. Szegedi E, Sule S, Burr TJ (1999) Agrobacterium vitis strain F2/5 contains tartrate and octopine utilization plasmids which do not encode functions for tumor inhibition on grapevine. J Phytopathol 147:665–669

    Article  Google Scholar 

  37. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554

    Article  CAS  PubMed  Google Scholar 

  38. Vannini A, Volpari C, Gargioli C, Murageli E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401

    Article  CAS  PubMed  Google Scholar 

  39. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264

    CAS  PubMed  Google Scholar 

  40. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  41. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl-homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Article  CAS  PubMed  Google Scholar 

  42. Zhang R, Pappas T, Brace JL, Miller PC, Qulmassov T, Molyneaus JM, Anderson JC, Bashkin JK, Winans SC et al (2002) Structure of bacterial quorum-sensing transcriptional factor complexed with pheromone and DNA. Nature 417:971–974

    Article  CAS  PubMed  Google Scholar 

  43. Zheng D, Zhang HS, Carle S, Hao GX, Holden MR, Burr TJ (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant-Microbe Interact 16:650–658

    Article  CAS  PubMed  Google Scholar 

  44. Zhu J, Chai Z, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acyl-homoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. A. Savka thanks Rochester Institute of Technology (RIT) for a sabbatical leave of absence. This study was supported by the NRI Competitive Grants Program/USDA award numbers 2002-35319-12577 to M. A. Savka and 2006-35319-16558 to T. J .Burr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Savka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savka, M.A., Le, P.T. & Burr, T.J. LasR Receptor for Detection of Long-Chain Quorum-Sensing Signals: Identification of N-Acyl-homoserine Lactones Encoded by the avsI Locus of Agrobacterium vitis . Curr Microbiol 62, 101–110 (2011). https://doi.org/10.1007/s00284-010-9679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9679-1

Keywords

Navigation