Skip to main content
Log in

Easy Visualization of the Protist Oxyrrhis marina Grazing on a Live Fluorescently Labelled Heterotrophic Nanoflagellate

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Planktonic heterotrophic flagellates are ubiquitous eukaryotic microorganisms that play a crucial role in carbon and nutrient fluxes through pelagic food webs. Here we illustrate for the first time a grazing model of planktonic dinoflagellate, Oxyrrhis marina, on the heterotrophic nanoflagellate Goniomonas amphinema, using the DNA-binding fluorescent dye Hoechst 33342. A solution of 1 μg/mL of the fluorochrome allowed viability of the prey for at least 48 hours, provided low fluorescence quenching, and labelled the flagellate without masking the cytoplasm. After 2 hours of contact between the fluorescent prey and the predator, O. marina population had preyed on live G. amphinema at an ingestion rate of 2.2 prey Oxyrrhis −1 h−1. Results show that this model is a time-effective and inexpensive approach for the direct observation of heterotrophic flagellate grazing. The fact that prey remain alive while predation occurs, as well as the low rate of quenching, could be of help in studying the fate of real-time trophic interactions between protists in microbial webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azam F, Fenchel T, Field JG, et al. (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  2. Berninger UG, Caron DA, Sanders RW, et al. (1991) Heterotrophic flagellates of planktonic communities, their characteristics and methods of study. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Systematics Association Special Volume No. 45. Clarendon, Oxford, UK, pp 35–56

    Google Scholar 

  3. Boenigk J, Arndt H, Cleven EJ (2001) The problematic nature of fluorescently labelled bacteria (FLB) in Spumella feeding experiments—An explanation by using video microscopy. Arch Hydrobiol 152:329–338

    Google Scholar 

  4. Carvalho WF, Graneli E (2006) Acidotropic probes and flow cytometry: a powerful combination for detecting phagotrophy in mixotrophic and heterotrophic protists. Aquat Microbiol Ecol 44:85–96

    Article  Google Scholar 

  5. Christoffersen K, Gonzalez JM (2003) An approach to measure ciliate grazing on living heterotrophic nanoflagellates. Hydrobiologia 491:159–166

    Article  Google Scholar 

  6. Cleven E (1996) Indirectly fluorescently labelled flagellates (IFLF): a tool to estimate the predation on free-living heterotrophic flagellates. J Plankton Res 18:429–442

    Article  Google Scholar 

  7. Davidson K, Cunningham A, Flynn KJ (1995) A first attempt to model factors affecting the ingestion of prey by the dinoflagellate Oxyrrhis marina. Cytology 37:969–977

    Google Scholar 

  8. Davidson K, Roberts EC, Wilson AM, et al. (2005) The role of prey nutritional status in governing protozoan nitrogen regeneration efficiency. Protist 156:45–62

    Article  PubMed  CAS  Google Scholar 

  9. Fenchel T (1982) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  10. Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Science Tech/Springer, Berlin, Germany

    Google Scholar 

  11. Flynn KJ, Davidson K (1993) Predator–prey interactions between Isochrysis galbana and Oxyrrhis marina. I. Changes in particulate delta 13C. J Plankton Res 15:455–463

    Article  Google Scholar 

  12. Flynn KJ, Davidson K, Cunningham A (1996) Prey selection and rejection by a microflagellate: implications for the study and operation of microbial food webs. J Exp Mar Biol Ecol 196:357–372

    Article  Google Scholar 

  13. Goldman JC, Dennet MR, Gordin H (1989) Dynamics of herbivorous grazing by the heterotrophic dinoflagellate Oxyrrhis marina. J Plankton Res 11:391–407

    Article  Google Scholar 

  14. Hammer A, Gruttner C, Schumann R (1999) The effect of electrostatic charge of food particles on capture efficiency by Oxyrrhis marina Dujardin (dinoflagellate). Protist 150:375–382

    Article  PubMed  CAS  Google Scholar 

  15. Hammer A, Gruttner C, Schumann R (2001) New biocompatible tracer particles: use for estimation of microzooplankton grazing, digestion, and growth rates. Aquat Microb Ecol 24:153–161

    Article  Google Scholar 

  16. Hansen FC, Witte HJ, Passarge J (1996) Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliana huxleyi cells. Aquat Microb Ecol 10:307–313

    Article  Google Scholar 

  17. Jeong HJ, Kang HJ, Shim JS, et al. (2001) Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar Ecol Prog Ser 218:77–86

    Article  Google Scholar 

  18. Jeong HJ, Kim JS, Yoo YD, et al. (2003) Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers. J Eukaryot Microbiol 50:274–282

    Article  PubMed  Google Scholar 

  19. Jeong HJ, Song JE, Kang NS, et al. (2007) Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. Mar Ecol Prog Ser 333:151–160

    Article  Google Scholar 

  20. Jürgens K, DeMott WR (1995) Behavioural flexibility in prey selection by bacterivorous nanoflagellates. Limnol Oceanogr 40:1503–1507

    Google Scholar 

  21. Jurgens K, Wickham SA, Rothhaupt KO, et al. (1996) Feeding rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnol Oceanogr 41:1833–1839

    Google Scholar 

  22. Li A, Stoecker DK, Coats DW, et al. (1996) Ingestion of fluorescently labelled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquat Microbiol Ecol 10:139–147

    Article  Google Scholar 

  23. Marie D, Vaulot D, Partensky F (1996) Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol 62:1649–1655

    PubMed  CAS  Google Scholar 

  24. Martel CM (2006) Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina. J Exp Mar Biol Ecol 335:210–220

    Article  Google Scholar 

  25. Mills DK, Tett P, Novarino G (1994) The spring bloom in the South Western North-Sea in 1989. Netherlands J Sea Res 33:65–80

    Article  Google Scholar 

  26. Monger BC, Landry MR (1993) Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl Environ Microbiol 59:905–911

    PubMed  CAS  Google Scholar 

  27. Naustvoll LJ (2000) Prey size spectra and food preferences in thecate heterotrophic dinoflagellates. Phycologia 39:187–198

    Article  Google Scholar 

  28. Opik H, Flynn KJ (1989) The digestive process of the dino-flagellate Oxyrrhis marina Dujardin, feeding on the chlorophyte, Dunaliella primolecta Butcher: a combined study of ultrastructure and free amino acids. New Phytol 113:143–151

    Article  CAS  Google Scholar 

  29. Premke K, Arndt H (2000) Predation on heterotrophic flagellates by protists: food selectivity determined using a live-staining technique. Arch Hydrobiol 150:17–28

    Google Scholar 

  30. Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh water- an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  31. Sanders RW, Leeper DA, King CH, et al. (1994) Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288:167–181

    Article  Google Scholar 

  32. Sleigh MA, Zubkov MV (1998) Methods of estimating bacterivory in protozoa. Eur J Protistol 34:273–280

    Google Scholar 

  33. Šolic M, Krstulovic N (1994) Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar Ecol Prog Ser 114:219–235

    Article  Google Scholar 

  34. Stoecker D (1988) Are marine planktonic ciliates suspension feeders? J Protozool 35:252–255

    Google Scholar 

  35. Tillmann U, Reckermann M (2002) Dinoflagellate grazing on the raphidophyte Fibrocapsa japonica. Aquat Microb Ecol 26:247–257

    Article  Google Scholar 

  36. Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the “microbial loop” of pelagic food webs. Limnol Oceanogr 33:245–255

    Google Scholar 

  37. Verity PG (1991) Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol Oceanogr 36:729–750

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a Marie Curie Fellowship of the European Community under Contract No. HPMF-CT-2002-01861 to M. M-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Martín-Cereceda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Cereceda, M., Williams, R.A.J. & Novarino, G. Easy Visualization of the Protist Oxyrrhis marina Grazing on a Live Fluorescently Labelled Heterotrophic Nanoflagellate. Curr Microbiol 57, 45–50 (2008). https://doi.org/10.1007/s00284-008-9150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9150-8

Keywords

Navigation