Skip to main content

Advertisement

Log in

Selection of the Internal Control Gene for Real-Time Quantitative RT-PCR Assays in Temperature Treated Leptospira

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30°C for 7 days until a density of 106 cells/ml was reached and then shifted to physiological temperatures (37°C and 42°C) and to environmental temperatures (25°C and 30°C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of = 1.1816, followed by flaB (= 1.682) and lipL41 (= 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  2. Bharti AR, Nally JE, Ricaldi JN et al (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3:757–771

    Article  PubMed  Google Scholar 

  3. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. Plant Biol 4:14

    Google Scholar 

  4. Bulach DM, Kalambaheti T, de la Peña-Moctezuma A, Adler B (2000) Lipopolysaccharide biosynthesis in Leptospira. J Mol Microbiol Biotechnol 2:375–380

    PubMed  CAS  Google Scholar 

  5. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  6. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrionol 29:23–39

    Article  CAS  Google Scholar 

  7. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  8. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    PubMed  Google Scholar 

  9. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  PubMed  CAS  Google Scholar 

  10. Haake DA, Walker EM, Blanco DR, Bolin CA, Miller JN, Lovett MA (1991) Changes in the surface of Leptospira interrogans serovar grippotyphosa during in vitro cultivation. Infect Immun 59:1131–1140

    PubMed  CAS  Google Scholar 

  11. Huggett J, Dheda K, Bustin SA, Zulma A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  12. Li Ch, Corum L, Morgan D, Rosey EL, Stanton TB, Charon NW (2000) The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity. J Bacteriol 182:6698–6706

    Article  Google Scholar 

  13. Lo M, Bulach DM, Powell DR, Haake DA, Matsunaga J, Paustian ML, Zuerner RL, Adler B (2006) Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays. Infect Immun 74:5848–5859

    Article  PubMed  CAS  Google Scholar 

  14. Marino JH, Cook P, Miller KS (2003) Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J Immunol Methods 283:291–306

    Article  PubMed  CAS  Google Scholar 

  15. Meller M, Vadachkoria S, Luthy DA, Williams MA (2005) Evaluation of housekeeping genes in placental comparative expression studies. Placenta 26:601–607

    Article  PubMed  CAS  Google Scholar 

  16. Mérien F, Amouriaux P, Perolat P, Baranton G, Saint Girons I (1992) Polymerase chain reaction for detection of Leptospira spp. in clinical samples. J Clin Microbiol 30:2219–2224

    PubMed  Google Scholar 

  17. Nally JE, Timoney JF, Stevenson B (2001) Temperature-regulated protein synthesis by Leptospira interrogans. Infect Immun 69:400–404

    Article  PubMed  CAS  Google Scholar 

  18. Natarajaseenivasan K, Vijayachari P, Sugunan AP, Sharma S, Sehgal SC (2004) Leptospiral proteins expressed during acute and convalescent phases of human leptospirosis. Indian J Med Res 120:151–159

    PubMed  CAS  Google Scholar 

  19. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  PubMed  CAS  Google Scholar 

  20. Picardeau M, Breton A, Saint-Girons I (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40:189–199

    Article  PubMed  CAS  Google Scholar 

  21. Qin JH, Sheng YY, Zhang ZM, Shi YZ, He P, Hu BY, Yang Y, Liu SG, Zhao GP, Guo ZK (2006) Genome-wide transcriptional analysis of temperature shift in Leptospira interrogans serovar lai strain 56601. Microbiology 6:51

    PubMed  Google Scholar 

  22. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  CAS  Google Scholar 

  23. Rasmussen R, Morrison T, Herrmann M, Wittwer C (1998) Quantitative PCR by continuous fluorescence monitoring of a double strand DNA specific binding dye. J Biochem 2:8–11

    Google Scholar 

  24. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. Plant Biol 6:27

    Google Scholar 

  25. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408

    Article  PubMed  CAS  Google Scholar 

  26. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  27. Schmittgen TD (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204

    Article  PubMed  CAS  Google Scholar 

  28. Schwan TG, Piesman J, Golde WT, Dolan MC, PA Rosa (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92:2909–2913

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz T, Walter S, Marten SM, Kirschhöfer F, Nusser M, Obst U (2007) Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Anal Bioanal Chem 387:513–521

    Article  PubMed  CAS  Google Scholar 

  30. Shang ES, Summers TA, Haake DA (1996) Molecular cloning and sequence analysis of the gene encoding lipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect Immun 64:2322–2330

    PubMed  CAS  Google Scholar 

  31. Smythe LD, Smith IL, Smith GA, Dohnt MF, Symonds ML, Barnett LJ, McKay DB (2002) A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp. Infect Dis 2:1–7

    Article  Google Scholar 

  32. Stamm LV, Gherardini FC, Parrish EA, Moomaw CR (1991) Heat shock response of spirochetes. Infect Immun 59:1572–1575

    PubMed  CAS  Google Scholar 

  33. Stöcher M, Leb V, Berg J (2003) A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assay. J Virol Methods 108:1–8

    Article  PubMed  Google Scholar 

  34. Stürzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol 130:281–289

    Article  Google Scholar 

  35. Swillens S, Goffard JC, Maréchal Y, d´Exaerde A, El Housni H (2004) Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Res 32(6):e53

    Article  CAS  Google Scholar 

  36. Tasara T, Stephan R (2007) Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269:265–272

    Article  PubMed  CAS  Google Scholar 

  37. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  PubMed  CAS  Google Scholar 

  38. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101

    Article  PubMed  CAS  Google Scholar 

  39. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time geometric averaging of multiple internal control genes. Genome Biol 3:00341–003411

    Article  Google Scholar 

  40. Woo HS, Patel BKC, Smythe LD, Norris MA, Symonds MR, Dohnt MF (1998) Identification of pathogenic Leptospira by TaqMan Probe in a LightCycler. Anal Biochem 256:132–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Universidad Nacional Autónoma de México Grant IN222806 and UCMEXUS-CONACYT Grant CN0254. The authors acknowledge the Unidad de Síntesis del Instituto de Biotecnología de la Universidad Nacional Autónoma de México (Cuernavaca, Morelos, México) for the oligonucleotide synthesis. We thank Fausto Sánchez for his assistance and helpful suggestions on the use of the RT-PCR equipment and acknowledge the technical assistance of Pablo Vera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro de la Peña-Moctezuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo-Casas, E.M., Hernández-Castro, R., Suárez-Güemes, F. et al. Selection of the Internal Control Gene for Real-Time Quantitative RT-PCR Assays in Temperature Treated Leptospira . Curr Microbiol 56, 539–546 (2008). https://doi.org/10.1007/s00284-008-9096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9096-x

Keywords

Navigation