Skip to main content

Advertisement

Log in

Intertwining roles of circadian and metabolic regulation of the innate immune response

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

It has emerged that an interconnected relationship exists between metabolism, circadian rhythms, and the immune system. The relationship between metabolism and circadian rhythms is not that surprising given the necessity to align rhythms of feeding/fasting with activity/rest. Recently, our understanding of the importance of metabolic pathways in terms of immune function, termed immunometabolism, has grown exponentially. It is now appreciated that the time of day during which the innate immune system is challenged strongly conditions the subsequent response. Recent observations have found that many individual components that make up the circadian clock also control aspects of metabolism in innate immune cells to modulate inflammation. This circadian/metabolic axis may be a key factor driving rhythmicity of immune function and circadian disruption is associated with a range of chronic inflammatory diseases such as atherosclerosis, obesity, and diabetes. The field of “circadian immunometabolism” seeks to reveal undiscovered circadian controlled metabolic pathways that in turn regulate immune responses. The innate immune system has been intricately linked to chronic inflammatory diseases, and within the immune system, individual cell types carry out unique roles in inflammation. Therefore, circadian immunometabolism effects are unique to each innate immune cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carroll RG, Timmons GA, Cervantes-silva MP, et al (2019) Immunometabolism around the Clock. Trends Mol Med 1–14. https://doi.org/10.1016/j.molmed.2019.04.013

  2. Rijo-Ferreira F, Takahashi JS (2019) Genomics of circadian rhythms in health and disease. Genome Med 11:1–16. https://doi.org/10.1186/S13073-019-0704-0

    Article  Google Scholar 

  3. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017. https://doi.org/10.1016/S0092-8674(00)00205-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondratov RV, Chernov MV, Kondratova AA et al (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev 17:1921–1932. https://doi.org/10.1101/gad.1099503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Der Horst GTJ, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630. https://doi.org/10.1038/19323

    Article  PubMed  Google Scholar 

  6. Tei H, Okamura H, Shigeyoshi Y et al (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516. https://doi.org/10.1038/39086

    Article  CAS  PubMed  Google Scholar 

  7. Langmesser S, Tallone T, Bordon A et al (2008) Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK. BMC Mol Biol 9:1–16. https://doi.org/10.1186/1471-2199-9-41

    Article  CAS  Google Scholar 

  8. Preitner N, Damiola F, Luis-Lopez-Molina et al (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260. https://doi.org/10.1016/S0092-8674(02)00825-5

    Article  CAS  PubMed  Google Scholar 

  9. Akashi M, Takumi T (2005) The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448. https://doi.org/10.1038/nsmb925

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto T, Nakahata Y, Soma H, et al (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:. https://doi.org/10.1186/1471-2199-5-18

  11. Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38:369–374. https://doi.org/10.1038/ng1738

    Article  CAS  PubMed  Google Scholar 

  12. Mermet J, Yeung J, Hurni C et al (2018) Clock-dependent chromatin topology modulates circadian transcription and behavior. Genes Dev 32:347–358. https://doi.org/10.1101/gad.312397.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125:S3. https://doi.org/10.1016/j.jaci.2009.12.980

    Article  PubMed  PubMed Central  Google Scholar 

  14. Creely SJ, McTernan PG, Kusminski CM, et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol - Endocrinol Metab 292:. https://doi.org/10.1152/ajpendo.00302.2006

  15. Voss K, Hong HS, Bader JE, et al (2021) A guide to interrogating immunometabolism. Nat. Rev. Immunol. 1–16

  16. O’Neill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cissé YM, Borniger JC, Lemanski E et al (2018) Time-restricted feeding alters the innate immune response to bacterial endotoxin. J Immunol 200:681–687. https://doi.org/10.4049/jimmunol.1701136

    Article  CAS  PubMed  Google Scholar 

  18. Alexander RK, Liou YH, Knudsen NH, et al (2020) Bmal1 integrates mitochondrial metabolism and macrophage activation. Elife 9:. https://doi.org/10.7554/eLife.54090

  19. Timmons GA, Carroll RG, O’Siorain JR et al (2021) The circadian clock protein BMAL1 Acts as a metabolic sensor in macrophages to control the production of Pro IL-1β. Front Immunol 12:1–15. https://doi.org/10.3389/fimmu.2021.700431

    Article  Google Scholar 

  20. Early JO, Menon D, Wyse CA et al (2018) Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci 115:E8460–E8468. https://doi.org/10.1073/pnas.1800431115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibbs JE, Blaikley J, Beesley S et al (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109:582–587. https://doi.org/10.1073/pnas.1106750109

    Article  PubMed  Google Scholar 

  22. Bellet MM, Deriu E, Liu JZ et al (2013) Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci U S A 110:9897–9902. https://doi.org/10.1073/pnas.1120636110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Narasimamurthy R, Hatori M, Nayak SK et al (2012) Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A 109:12662–12667. https://doi.org/10.1073/pnas.1209965109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nobis CC, Laramée GD, Kervezee L et al (2019) The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 116:20077–20086. https://doi.org/10.1073/pnas.1905080116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hopwood TW, Hall S, Begley N et al (2018) The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-22021-5

    Article  CAS  Google Scholar 

  26. Amir M, Campbell S, Kamenecka TM, Solt LA (2020) Pharmacological modulation and genetic deletion of REV-ERBα and REV-ERBβ regulates dendritic cell development. Biochem Biophys Res Commun 527:1000–1007. https://doi.org/10.1016/j.bbrc.2020.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adrover JM, del Fresno C, Crainiciuc G et al (2019) A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:390-402.e10. https://doi.org/10.1016/j.immuni.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  28. Nussbaum JC, Van Dyken SJ, Von Moltke J et al (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–248. https://doi.org/10.1038/nature12526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura Y, Nakano N, Ishimaru K et al (2014) Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol 133:568-575.e12. https://doi.org/10.1016/j.jaci.2013.07.040

    Article  CAS  PubMed  Google Scholar 

  30. Kawauchi T, Ishimaru K, Nakamura Y et al (2017) Clock-dependent temporal regulation of IL-33/ST2-mediated mast cell response. Allergol Int 66:472–478. https://doi.org/10.1016/j.alit.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Caslin HL, Taruselli MT, Haque T et al (2018) Inhibiting glycolysis and ATP production attenuates IL-33-mediated mast cell function and peritonitis. Front Immunol 9:3026. https://doi.org/10.3389/fimmu.2018.03026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ et al (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes 37:604–611. https://doi.org/10.1038/ijo.2012.229

    Article  CAS  Google Scholar 

  33. Mohren DCL, Jansen NWH, Kant IJ et al (2002) Prevalence of common infections among employees in different work schedules. J Occup Environ Med 44:1003–1011. https://doi.org/10.1097/00043764-200211000-00005

    Article  PubMed  Google Scholar 

  34. Arble DM, Bass J, Laposky AD et al (2009) Circadian timing of food intake contributes to weight gain. Obesity 17:2100–2102. https://doi.org/10.1038/oby.2009.264

    Article  PubMed  Google Scholar 

  35. Chaix A, Lin T, Le HD et al (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29:303-319.e4. https://doi.org/10.1016/j.cmet.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  36. Castanon-Cervantes O, Wu M, Ehlen JC et al (2010) Dysregulation of Inflammatory responses by chronic circadian disruption. J Immunol 185:5796–5805. https://doi.org/10.4049/jimmunol.1001026

    Article  CAS  PubMed  Google Scholar 

  37. Masri S, Sassone-Corsi P (2010) Plasticity and specificity of the circadian epigenome. Nat Neurosci 13:1324–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aguilar-Arnal L, Sassone-Corsi P (2015) Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 112:6863–6870. https://doi.org/10.1073/pnas.1411264111

    Article  CAS  PubMed  Google Scholar 

  39. Liu G, Bi Y, Xue L et al (2015) Dendritic cell SIRT1-HIF1α axis programs the differentiation of CD4+ T cells through IL-12 and TGF-β1. Proc Natl Acad Sci U S A 112:E957–E965. https://doi.org/10.1073/pnas.1420419112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Infantino V, Iacobazzi V, Palmieri F, Menga A (2013) ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun 440:105–111. https://doi.org/10.1016/j.bbrc.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  41. Nakahata Y, Sahar S, Astarita G et al (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science (80-) 324:654–657. https://doi.org/10.1126/science.1170803

    Article  CAS  Google Scholar 

  42. Ramsey KM, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-Mediated NAD+ biosynthesis. Science (80- ) 324:651–654. https://doi.org/10.1126/science.1171641

    Article  CAS  Google Scholar 

  43. Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. https://doi.org/10.1016/j.cell.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dang W (2014) The controversial world of sirtuins. Drug Discov. Today Technol. 12:e9

  45. Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science (80- ) 324:1076–1080. https://doi.org/10.1126/science.1164097

    Article  CAS  Google Scholar 

  46. Mauvoisin D, Wang J, Jouffe C et al (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111:167–172. https://doi.org/10.1073/pnas.1314066111

    Article  CAS  PubMed  Google Scholar 

  47. Eckel-Mahan KL, Patel VR, Mohney RP et al (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109:5541–5546. https://doi.org/10.1073/pnas.1118726109

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sahar S, Masubuchi S, Eckel-Mahan K et al (2014) Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme a synthetase 1. J Biol Chem 289:6091–6097. https://doi.org/10.1074/jbc.M113.537191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tannahill GM, Curtis AM, Adamik J et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242. https://doi.org/10.1038/nature11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Curtis AM, Fagundes CT, Yang G et al (2015) Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A 112:7231–7236. https://doi.org/10.1073/pnas.1501327112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deng W, Zhu S, Zeng L et al (2018) The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep 24:366–378. https://doi.org/10.1016/j.celrep.2018.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silver AC, Arjona A, Walker WE, Fikrig E (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36:251–261. https://doi.org/10.1016/j.immuni.2011.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Silver AC, Buckley SM, Hughes ME et al (2018) Daily oscillations in expression and responsiveness of toll-like receptors in splenic immune cells. Heliyon 4:e00579. https://doi.org/10.1016/j.heliyon.2018.e00579

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bell JH, Herrera AH, Li Y, Walcheck B (2007) Role of ADAM17 in the ectodomain shedding of TNF- and its receptors by neutrophils and macrophages. J Leukoc Biol 82:173–176. https://doi.org/10.1189/jlb.0307193

    Article  CAS  PubMed  Google Scholar 

  56. Keller M, Mazuch J, Abraham U et al (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412. https://doi.org/10.1073/pnas.0906361106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spengler ML, Kuropatwinski KK, Comas M et al (2012) Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci U S A 109:E2457. https://doi.org/10.1073/pnas.1206274109

    Article  PubMed  PubMed Central  Google Scholar 

  58. Song MJ, Kim KH, Yoon JM, Kim JB (2006) Activation of toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346:739–745. https://doi.org/10.1016/j.bbrc.2006.05.170

    Article  CAS  PubMed  Google Scholar 

  59. Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025. https://doi.org/10.1172/JCI28898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roshan MHK, Tambo A, Pace NP (2016) The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int. J. Inflam. 2016

  61. Michelsen KS, Wong MH, Shah PK et al (2004) Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 101:10679–10684. https://doi.org/10.1073/pnas.0403249101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reyna SM, Ghosh S, Tantiwong P et al (2008) Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57:2595–2602. https://doi.org/10.2337/db08-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science (80- ) 328:228–231. https://doi.org/10.1126/science.1179721

    Article  CAS  Google Scholar 

  64. Hong CP, Yun CH, Lee GW et al (2015) TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders. Obesity 23:2199–2206. https://doi.org/10.1002/oby.21215

    Article  CAS  PubMed  Google Scholar 

  65. Kracht M, Müller-Ladner U, Schmitz ML (2020) Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. J Allergy Clin Immunol 146:694–705. https://doi.org/10.1016/j.jaci.2020.07.027

    Article  CAS  PubMed  Google Scholar 

  66. Everts B, Amiel E, Huang SCC et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332. https://doi.org/10.1038/ni.2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wculek SK, Khouili SC, Priego E et al (2019) Metabolic control of dendritic cell functions: digesting information. Front Immunol 10:775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei G, Jie Y, Haibo L et al (2017) Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep 7:1–9. https://doi.org/10.1038/srep42996

    Article  CAS  Google Scholar 

  69. Druzd D, Matveeva O, Ince L et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–132. https://doi.org/10.1016/j.immuni.2016.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holtkamp SJ, Ince LM, Barnoud C et al (2021) Circadian clocks guide dendritic cells into skin lymphatics. Nat Immunol 22:1375–1381. https://doi.org/10.1038/s41590-021-01040-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guak H, Al Habyan S, Ma EH et al (2018) Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-04804-6

    Article  CAS  Google Scholar 

  72. Jin X, Zhang W, Wang Y, et al (2020) Pyruvate kinase M2 promotes the activation of dendritic cells by enhancing IL-12p35 expression. Cell Rep 31:. https://doi.org/10.1016/j.celrep.2020.107690

  73. Aroca-Crevillén A, Adrover JM, Hidalgo A (2020) Circadian features of neutrophil biology. Front Immunol 11:576

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gibbs J, Ince L, Matthews L et al (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20:919–926. https://doi.org/10.1038/nm.3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vehviläinen P, Koistinaho J, Goldsteins G (2014) Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci 8:126

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhou W, Cao L, Jeffries J, et al (2018) Neutrophil-specific knockout demonstrates a role for mitochondria in regulating neutrophil motility in zebrafish. DMM Dis. Model. Mech. 11

  77. Töbelmann D, Dittmar M (2021) Diurnal relationship between core clock gene BMAL1, antioxidant SOD1 and oxidative RNA/DNA damage in young and older healthy women. Exp Gerontol 151:. https://doi.org/10.1016/j.exger.2021.111422

  78. Injarabian L, Devin A, Ransac S, Marteyn BS (2020) Neutrophil metabolic shift during their lifecycle: Impact on their survival and activation. Int. J. Mol. Sci. 21

  79. Skokowa J, Lan D, Thakur BK et al (2009) NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD+-sirtuin-1-dependent pathway. Nat Med 15:151–158. https://doi.org/10.1038/nm.1913

    Article  CAS  PubMed  Google Scholar 

  80. Chacko BK, Kramer PA, Ravi S et al (2013) Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Investig 93:690–700. https://doi.org/10.1038/labinvest.2013.53

    Article  CAS  PubMed  Google Scholar 

  81. Rice CM, Davies LC, Subleski JJ et al (2018) Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-07505-2

    Article  CAS  Google Scholar 

  82. Ella K, Csépányi-Kömi R, Káldi K (2016) Circadian regulation of human peripheral neutrophils. Brain Behav Immun 57:209–221. https://doi.org/10.1016/j.bbi.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  83. Wolthers OD, Heuck C (2003) Circadian variations in serum eosinophil cationic protein, and serum and urine eosinophil protein X. Pediatr Allergy Immunol 14:130–133. https://doi.org/10.1034/j.1399-3038.2003.02038.x

    Article  CAS  PubMed  Google Scholar 

  84. Pauly JE, Burns ER, Halberg F et al (1975) Meal timing dominates the lighting regimen as a synchronizer of the eosinophil rhythm in mice. Acta Anat (Basel) 93:60–68. https://doi.org/10.1159/000144497

    Article  CAS  Google Scholar 

  85. Panzer SE, Dodge AM, Kelly EAB, Jarjour NN (2003) Circadian variation of sputum inflammatory cells in mild asthma. J Allergy Clin Immunol 111:308–312. https://doi.org/10.1067/mai.2003.65

    Article  PubMed  Google Scholar 

  86. Peachman KK, Lyles DS, Bass DA (2001) Mitochondria in eosinophils: functional role in apoptosis but not respiration. Proc Natl Acad Sci U S A 98:1717–1722. https://doi.org/10.1073/pnas.98.4.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones N, Vincent EE, Felix LC et al (2020) Interleukin-5 drives glycolysis and reactive oxygen species-dependent citric acid cycling by eosinophils. Allergy Eur J Allergy Clin Immunol 75:1361–1370. https://doi.org/10.1111/all.14158

    Article  CAS  Google Scholar 

  88. Sumbayev VV, Nicholas SA, Streatfield CL, Gibbs BF (2009) Involvement of hypoxia-inducible factor-1 (HiF-1α) in IgE-mediated primary human basophil responses. Eur J Immunol 39:3511–3519. https://doi.org/10.1002/eji.200939370

    Article  CAS  PubMed  Google Scholar 

  89. Spadaro G, Giurato G, Stellato C et al (2020) Basophil degranulation in response to IgE ligation is controlled by a distinctive circadian clock in asthma. Allergy Eur J Allergy Clin Immunol 75:158–168. https://doi.org/10.1111/all.14002

    Article  CAS  Google Scholar 

  90. Forrestel AC, Miedlich SU, Yurcheshen M et al (2017) Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 60:808–822

    Article  CAS  PubMed  Google Scholar 

  91. Rudic RD, McNamara P, Curtis AM, et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:. https://doi.org/10.1371/journal.pbio.0020377

  92. Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631. https://doi.org/10.1038/nature09253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Orliaguet L, Dalmas E, Drareni K, et al (2020) Mechanisms of macrophage polarization in insulin signaling and sensitivity. Front. Endocrinol. (Lausanne). 11:62

  94. Pollack RM, Donath MY, LeRoith D, Leibowitz G (2016) Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care 39:S244–S252. https://doi.org/10.2337/dcS15-3015

    Article  CAS  PubMed  Google Scholar 

  95. Scheer FAJL, Hilton MF, Evoniuk HL, et al (2021) The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc Natl Acad Sci U S A 118:. https://doi.org/10.1073/pnas.2018486118

  96. Aguiar HPL, Morello J, Alves AC et al (2020) Metabolic dysfunction and asthma: Current perspectives. J Asthma Allergy 13:237–247

    Article  PubMed  PubMed Central  Google Scholar 

  97. Canöz M, Erdenen F, Uzun H, et al (2008) The relationship of inflammatory cytokines with asthma and obesity. Clin Investig Med 31:. https://doi.org/10.25011/cim.v31i6.4924

  98. Gibbs JE, Ray DW (2013) The role of the circadian clock in rheumatoid arthritis. Arthritis Res Ther 15:1–9

    Article  Google Scholar 

  99. Sulli A, Maestroni GJM, Villaggio B, et al (2002) Melatonin serum levels in rheumatoid arthritis. In: Annals of the New York Academy of Sciences. Ann N Y Acad Sci, pp 276–283

  100. Gremese E, Ferraccioli G (2011) The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risk. Autoimmun Rev 10:582–589

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a Science Foundation Ireland Career Development Award (17/CDA/4688) and an Irish Research Council Laureate Award (IRCLA/2017/110) provided to A.M.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shannon L. Cox or Richard G. Carroll.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

This article is a contribution to the special issue on: Chronoimmunology: from preclinical assessments to clinical applications - Guest Editors: Henrik Oster & David Ray

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Annie M. Curtis and Richard G. Carroll are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, S.L., O’Siorain, J.R., Fagan, L.E. et al. Intertwining roles of circadian and metabolic regulation of the innate immune response. Semin Immunopathol 44, 225–237 (2022). https://doi.org/10.1007/s00281-021-00905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00905-5

Keywords

Navigation