Skip to main content

Advertisement

Log in

Recent advances in understanding the genetic basis of systemic lupus erythematosus

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type–specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Firestein GS, Gabriel SE, McInnes IB et al (2017) Kelley and Firestein's textbook of rheumatology

  2. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725. https://doi.org/10.1002/art.1780400928

    Article  CAS  PubMed  Google Scholar 

  3. Petri M, Orbai AM, Alarcon GS et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. https://doi.org/10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aringer M, Costenbader K, Daikh D et al (2019) 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol 71(9):1400–1412. https://doi.org/10.1002/art.40930

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aringer M, Dorner T, Leuchten N et al (2016) Toward new criteria for systemic lupus erythematosus-a standpoint. Lupus 25(8):805–811. https://doi.org/10.1177/0961203316644338

    Article  CAS  PubMed  Google Scholar 

  6. Carter EE, Barr SG, Clarke AE (2016) The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol 12(10):605–620. https://doi.org/10.1038/nrrheum.2016.137

    Article  PubMed  Google Scholar 

  7. Rees F, Doherty M, Grainge MJ et al (2017) The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford) 56(11):1945–1961. https://doi.org/10.1093/rheumatology/kex260

    Article  Google Scholar 

  8. Rees F, Doherty M, Grainge M et al (2016) The incidence and prevalence of systemic lupus erythematosus in the UK, 1999–2012. Ann Rheum Dis 75(1):136–141. https://doi.org/10.1136/annrheumdis-2014-206334

    Article  PubMed  Google Scholar 

  9. Tomic-Lucic A, Petrovic R, Radak-Perovic M et al (2013) Late-onset systemic lupus erythematosus: clinical features, course, and prognosis. Clin Rheumatol 32(7):1053–1058. https://doi.org/10.1007/s10067-013-2238-y

    Article  PubMed  Google Scholar 

  10. Mak A, Tay SH (2014) Environmental factors, toxicants and systemic lupus erythematosus. Int J Mol Sci 15(9):16043–16056. https://doi.org/10.3390/ijms150916043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwon YC, Chun S, Kim K et al (2019) Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond. Cells 8(10):1180. https://doi.org/10.3390/cells8101180

    Article  CAS  PubMed Central  Google Scholar 

  12. Longo D, Fauci A, Kasper D et al (2011) Harrison's Principles of Internal Medicine, 18th Edition. Mcgraw-hill

  13. Parks CG, de Souza Espindola A, Santos MB et al (2017) Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 31(3):306–320. https://doi.org/10.1016/j.berh.2017.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front Immunol 92279.https://doi.org/10.3389/fimmu.2018.02279

  15. Laffont S, Rouquie N, Azar P et al (2014) X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol 193(11):5444–5452. https://doi.org/10.4049/jimmunol.1303400

    Article  CAS  PubMed  Google Scholar 

  16. Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin Dev Immunol 2012604892.https://doi.org/10.1155/2012/604892

  17. Boddaert J, Huong DLT, Amoura Z et al (2004) Late-onset systemic lupus erythematosus: a personal series of 47 patients and pooled analysis of 714 cases in the literature. Medicine (Baltimore) 83(6):348–359. https://doi.org/10.1097/01.md.0000147737.57861.7c

    Article  Google Scholar 

  18. Kozyrev SV, Abelson AK, Wojcik J et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40(2):211–216. https://doi.org/10.1038/ng.79

    Article  CAS  PubMed  Google Scholar 

  19. G. International Consortium for Systemic Lupus Erythematosus, Harley JB, Alarcon-Riquelme ME et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40(2):204–10. https://doi.org/10.1038/ng.81

    Article  CAS  Google Scholar 

  20. Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358(9):900–909. https://doi.org/10.1056/NEJMoa0707865

    Article  CAS  PubMed  Google Scholar 

  21. Graham RR, Cotsapas C, Davies L et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40(9):1059–1061. https://doi.org/10.1038/ng.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han JW, Zheng HF, Cui Y et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41(11):1234–1237. https://doi.org/10.1038/ng.472

    Article  CAS  PubMed  Google Scholar 

  23. Gateva V, Sandling JK, Hom G et al (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41(11):1228–1233. https://doi.org/10.1038/ng.468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang W, Shen N, Ye DQ et al (2010) Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 6(2):e1000841. https://doi.org/10.1371/journal.pgen.1000841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Yang W, Hirankarn N et al (2011) ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum Mol Genet 20(3):601–607. https://doi.org/10.1093/hmg/ddq474

    Article  CAS  PubMed  Google Scholar 

  26. Okada Y, Shimane K, Kochi Y et al (2012) A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet 8(1):e1002455. https://doi.org/10.1371/journal.pgen.1002455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee YH, Bae SC, Choi SJ et al (2012) Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 39(12):10627–10635. https://doi.org/10.1007/s11033-012-1952-x

    Article  CAS  PubMed  Google Scholar 

  28. Yang W, Tang H, Zhang Y et al (2013) Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet 92(1):41–51. https://doi.org/10.1016/j.ajhg.2012.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin JE, Assassi S, Diaz-Gallo LM et al (2013) A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum Mol Genet 22(19):4021–4029. https://doi.org/10.1093/hmg/ddt248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Armstrong DL, Zidovetzki R, Alarcon-Riquelme ME et al (2014) GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15(6):347–354. https://doi.org/10.1038/gene.2014.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentham J, Morris DL, Graham DSC et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47(12):1457–1464. https://doi.org/10.1038/ng.3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demirci FY, Wang X, Kelly JA et al (2016) Identification of a new susceptibility locus for systemic lupus erythematosus on chromosome 12 in individuals of European ancestry. Arthritis Rheumatol 68(1):174–183. https://doi.org/10.1002/art.39403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alarcon-Riquelme ME, Ziegler JT, Molineros J et al (2016) Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol 68(4):932–943. https://doi.org/10.1002/art.39504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lessard CJ, Sajuthi S, Zhao J et al (2016) Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol 68(5):1197–1209. https://doi.org/10.1002/art.39548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris DL, Sheng Y, Zhang Y et al (2016) Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 48(8):940–946. https://doi.org/10.1038/ng.3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun C, Molineros JE, Looger LL et al (2016) High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 48(3):323–330. https://doi.org/10.1038/ng.3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marquez A, Vidal-Bralo L, Rodriguez-Rodriguez L et al (2017) A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 76(1):286–294. https://doi.org/10.1136/annrheumdis-2016-209436

    Article  CAS  PubMed  Google Scholar 

  38. Langefeld CD, Ainsworth HC, Cunninghame Graham DS et al (2017) Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 816021. https://doi.org/10.1038/ncomms16021

  39. Zhao J, Ma J, Deng Y et al (2017) A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 49(3):433–437. https://doi.org/10.1038/ng.3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Julia A, Lopez-Longo FJ, Perez Venegas JJ et al (2018) Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res Ther 20(1):100. https://doi.org/10.1186/s13075-018-1604-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi YY, Zhou XJ, Nath SK et al (2018) A rare variant (rs933717) at FBXO31-MAP1LC3B in Chinese is associated with systemic lupus erythematosus. Arthritis Rheumatol 70(2):287–297. https://doi.org/10.1002/art.40353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang YF, Zhang Y, Zhu Z et al (2018) Identification of ST3AGL4, MFHAS1, CSNK2A2 and CD226 as loci associated with systemic lupus erythematosus (SLE) and evaluation of SLE genetics in drug repositioning. Ann Rheum Dis 77(7):1078–1084. https://doi.org/10.1136/annrheumdis-2018-213093

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Zhang Y, Wang YF et al (2018) Meta-analysis of GWAS on both Chinese and European populations identifies GPR173 as a novel X chromosome susceptibility gene for SLE. Arthritis Res Ther 20(1):92. https://doi.org/10.1186/s13075-018-1590-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen L, Zhu C, Zhu Z et al (2018) Exome-wide association study identifies four novel loci for systemic lupus erythematosus in Han Chinese population. Ann Rheum Dis 77(3):417. https://doi.org/10.1136/annrheumdis-2017-211823

    Article  CAS  PubMed  Google Scholar 

  45. Akizuki S, Ishigaki K, Kochi Y et al (2019) PLD4 is a genetic determinant to systemic lupus erythematosus and involved in murine autoimmune phenotypes. Ann Rheum Dis 78(4):509–518. https://doi.org/10.1136/annrheumdis-2018-214116

    Article  CAS  PubMed  Google Scholar 

  46. Acosta-Herrera M, Kerick M, Gonzalez-Serna D et al (2019) Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 78(3):311–319. https://doi.org/10.1136/annrheumdis-2018-214127

    Article  CAS  PubMed  Google Scholar 

  47. Zhang F, Wang YF, Zhang Y et al (2020)Independent replication on genome-wide association study signals identifies IRF3 as a novel locus for systemic lupus erythematosus.Front Genet 11600.https://doi.org/10.3389/fgene.2020.00600

  48. Qi YY, Zhai YL, Liu XR et al (2020) Single nucleotide polymorphisms in PPARD associated with systemic lupus erythematosus in Chinese populations. J Immunol Res 20207285747.https://doi.org/10.1155/2020/7285747

  49. Tangtanatakul P, Thumarat C, Satproedprai N et al (2020) Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population. Arthritis Res Ther 22(1):185. https://doi.org/10.1186/s13075-020-02276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yin X, Kim K, Suetsugu H et al (2020) Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-219209

    Article  PubMed  Google Scholar 

  51. Song Q, Lei Y, Shao L et al (2021) Genome-wide association study on Northern Chinese identifies KLF2, DOT1L and STAB2 associated with systemic lupus erythematosus. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keab016

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang YF, Zhang Y, Lin Z et al (2021) Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat Commun 12(1):772. https://doi.org/10.1038/s41467-021-21049-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang H, U.-D. Consortium, De Wolf H et al (2019) A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet 51(7):1082–1091. https://doi.org/10.1038/s41588-019-0456-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Plenge RM (2019) Priority index for human genetics and drug discovery. Nat Genet 51(7):1073–1075. https://doi.org/10.1038/s41588-019-0460-5

    Article  CAS  PubMed  Google Scholar 

  55. Webb R, Kelly JA, Somers EC et al (2011) Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann Rheum Dis 70(1):151–156. https://doi.org/10.1136/ard.2010.141697

    Article  PubMed  Google Scholar 

  56. Taylor KE, Chung SA, Graham RR et al (2011) Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet 7(2):e1001311. https://doi.org/10.1371/journal.pgen.1001311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Joo YB, Lim J, Tsao BP et al (2018) Genetic variants in systemic lupus erythematosus susceptibility loci, XKR6 and GLT1D1 are associated with childhood-onset SLE in a Korean cohort. Sci Rep 8(1):9962. https://doi.org/10.1038/s41598-018-28128-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reid S, Alexsson A, Frodlund M et al (2020) High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus. Ann Rheum Dis 79(3):363–369. https://doi.org/10.1136/annrheumdis-2019-216227

    Article  CAS  PubMed  Google Scholar 

  59. Chen L, Wang YF, Liu L et al (2020) Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum Mol Genet 29(10):1745–1756. https://doi.org/10.1093/hmg/ddaa030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lawrence JS, Martins CL, Drake GL (1987) A family survey of lupus erythematosus. 1. Heritability. J Rheumatol 14(5):913–21

    CAS  PubMed  Google Scholar 

  61. Kuo CF, Grainge MJ, Valdes AM et al (2015) Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern Med 175(9):1518–1526. https://doi.org/10.1001/jamainternmed.2015.3528

    Article  PubMed  Google Scholar 

  62. Chandra V, Bhattacharyya S, Schmiedel BJ et al (2021) Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nat Genet 53(1):110–119. https://doi.org/10.1038/s41588-020-00745-3

    Article  CAS  PubMed  Google Scholar 

  63. Hou G, Harley ITW, Lu X et al (2021) SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 12(1):135. https://doi.org/10.1038/s41467-020-20460-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Imgenberg-Kreuz J, Carlsson Almlof J, Leonard D et al (2018) DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis 77(5):736–743. https://doi.org/10.1136/annrheumdis-2017-212379

    Article  CAS  PubMed  Google Scholar 

  65. Su C, Johnson ME, Torres A et al (2020) Mapping effector genes at lupus GWAS loci using promoter Capture-C in follicular helper T cells. Nat Commun 11(1):3294. https://doi.org/10.1038/s41467-020-17089-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harley JB, Chen X, Pujato M et al (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 50(5):699–707. https://doi.org/10.1038/s41588-018-0102-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu X, Chen X, Forney C et al (2021) Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun 12(1):1611. https://doi.org/10.1038/s41467-021-21854-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Molineros JE, Singh B, Terao C et al (2019) Mechanistic characterization of RASGRP1 variants identifies an hnRNP-K-regulated transcriptional enhancer contributing to SLE susceptibility. Front Immunol 101066.https://doi.org/10.3389/fimmu.2019.01066

  69. Jones SA, Cantsilieris S, Fan H et al (2019) Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Sci Rep 9(1):15433. https://doi.org/10.1038/s41598-019-51864-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thynn HN, Chen XF, Hu WX et al (2020) An allele-specific functional SNP associated with two systemic autoimmune diseases modulates IRF5 expression by long-range chromatin loop formation. J Invest Dermatol 140(2):348-360 e11. https://doi.org/10.1016/j.jid.2019.06.147

    Article  CAS  PubMed  Google Scholar 

  71. Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH et al (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52(4):1138–1147. https://doi.org/10.1002/art.20999

    Article  PubMed  Google Scholar 

  72. Deapen D, Escalante A, Weinrib L et al (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35(3):311–318. https://doi.org/10.1002/art.1780350310

    Article  CAS  PubMed  Google Scholar 

  73. Moser KL, Kelly JA, Lessard CJ et al (2009) Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 10(5):373–379. https://doi.org/10.1038/gene.2009.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fielder AH, Walport MJ, Batchelor JR et al (1983) Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J (Clin Res Ed) 286(6363):425–428. https://doi.org/10.1136/bmj.286.6363.425

    Article  CAS  Google Scholar 

  75. Botto M, Walport MJ (2002) C1q, autoimmunity and apoptosis. Immunobiology 205(4–5):395–406. https://doi.org/10.1078/0171-2985-00141

    Article  CAS  PubMed  Google Scholar 

  76. Schur PH (1995) Genetics of systemic lupus erythematosus. Lupus 4(6):425–437. https://doi.org/10.1177/096120339500400603

    Article  CAS  PubMed  Google Scholar 

  77. Horton R, Wilming L, Rand V et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899. https://doi.org/10.1038/nrg1489

    Article  CAS  PubMed  Google Scholar 

  78. Trowsdale J, Knight JC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14301–23.https://doi.org/10.1146/annurev-genom-091212-153455

  79. Jia X, Han B, Onengut-Gumuscu S et al (2013) Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8(6):e64683. https://doi.org/10.1371/journal.pone.0064683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dilthey AT, Moutsianas L, Leslie S et al (2011) HLA*IMP—an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 27(7):968–972. https://doi.org/10.1093/bioinformatics/btr061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lim J, Bae SC, Kim K (2019) Understanding HLA associations from SNP summary association statistics. Sci Rep 9(1):1337. https://doi.org/10.1038/s41598-018-37840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morris DL, Taylor KE, Fernando MM et al (2012) Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 91(5):778–793. https://doi.org/10.1016/j.ajhg.2012.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bang SY, Choi JY, Park S et al (2016) Brief Report: influence of HLA-DRB1 susceptibility alleles on the clinical subphenotypes of systemic lupus erythematosus in Koreans. Arthritis Rheumatol 68(5):1190–1196. https://doi.org/10.1002/art.39539

    Article  CAS  PubMed  Google Scholar 

  84. Kim K, Bang SY, Lee HS et al (2014) The HLA-DRbeta1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun 55902.https://doi.org/10.1038/ncomms6902

  85. Molineros JE, Looger LL, Kim K et al (2019) Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genet 15(4):e1008092. https://doi.org/10.1371/journal.pgen.1008092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kamitaki N, Sekar A, Handsaker RE et al (2020) Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582(7813):577–581. https://doi.org/10.1038/s41586-020-2277-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morimoto K, Baba Y, Shinohara H et al (2016) LRRK1 is critical in the regulation of B-cell responses and CARMA1-dependent NF-kappaB activation. Sci Rep 625738.https://doi.org/10.1038/srep25738

  88. Linge P, Arve S, Olsson LM et al (2020) NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus. Ann Rheum Dis 79(2):254–261. https://doi.org/10.1136/annrheumdis-2019-215820

    Article  CAS  PubMed  Google Scholar 

  89. Peoples R, Franke Y, Wang YK et al (2000) A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome—deletion region at 7q11.23. Am J Hum Genet 66(1):47–68. https://doi.org/10.1086/302722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yin X, Kim K, Suetsugu H et al (2020) Meta-analysis of 208,370 East Asians identifies 113 genomic loci and yields new non-immune cell relevant biological insights for systemic lupus erythematosus. medRxiv 2020.08.22.20178939. https://doi.org/10.1101/2020.08.22.20178939

  91. Lewis CM, Vassos E (2020) Polygenic risk scores: from research tools to clinical instruments. Genome Med 12(1):44. https://doi.org/10.1186/s13073-020-00742-5

    Article  PubMed  PubMed Central  Google Scholar 

  92. Torkamani A, Wineinger NE, Topol EJ (2018) The personal and clinical utility of polygenic risk scores. Nat Rev Genet 19(9):581–590. https://doi.org/10.1038/s41576-018-0018-x

    Article  CAS  PubMed  Google Scholar 

  93. Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20(8):467–484. https://doi.org/10.1038/s41576-019-0127-1

    Article  CAS  PubMed  Google Scholar 

  94. Amariuta T, Ishigaki K, Sugishita H et al (2020) Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat Genet 52(12):1346–1354. https://doi.org/10.1038/s41588-020-00740-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sandling JK, Pucholt P, Hultin Rosenberg L et al (2021) Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann Rheum Dis 80(1):109–117. https://doi.org/10.1136/annrheumdis-2020-218636

    Article  CAS  PubMed  Google Scholar 

  96. Fritz MS, Mackinnon DP (2007) Required sample size to detect the mediated effect. Psychol Sci 18(3):233–239. https://doi.org/10.1111/j.1467-9280.2007.01882.x

    Article  PubMed  Google Scholar 

  97. Javierre BM, Burren OS, Wilder SP et al (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167(5):1369-1384 e19. https://doi.org/10.1016/j.cell.2016.09.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chun S, Casparino A, Patsopoulos NA et al (2017) Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat Genet 49(4):600–605. https://doi.org/10.1038/ng.3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ha E, Bang SY, Lim J et al (2021) Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4(+) T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-219152

    Article  PubMed  Google Scholar 

  100. Singh B, Maiti GP, Zhou X et al (2021) Lupus susceptibility region containing CDKN1B rs34330 mechanistically influences expression and function of multiple target genes, also linked to proliferation and apoptosis. Arthritis Rheumatol. https://doi.org/10.1002/art.41799

    Article  PubMed  Google Scholar 

  101. James JA, Kaufman KM, Farris AD et al (1997) An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100(12):3019–3026. https://doi.org/10.1172/JCI119856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hanlon P, Avenell A, Aucott L et al (2014) Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res Ther 16(1):R3. https://doi.org/10.1186/ar4429

    Article  PubMed  PubMed Central  Google Scholar 

  103. McClain MT, Heinlen LD, Dennis GJ et al (2005) Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 11(1):85–89. https://doi.org/10.1038/nm1167

    Article  CAS  PubMed  Google Scholar 

  104. Harley JB, James JA (2006) Epstein-Barr virus infection induces lupus autoimmunity. Bull NYU Hosp Jt Dis 64(1–2):45–50

    PubMed  Google Scholar 

  105. Zhou H, Schmidt SC, Jiang S et al (2015) Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe 17(2):205–216. https://doi.org/10.1016/j.chom.2014.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schaid DJ, Chen W, Larson NB (2018) From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 19(8):491–504. https://doi.org/10.1038/s41576-018-0016-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu JZ, Erlich Y, Pickrell JK (2017) Case-control association mapping by proxy using family history of disease. Nat Genet 49(3):325–331. https://doi.org/10.1038/ng.3766

    Article  CAS  PubMed  Google Scholar 

  108. Hujoel MLA, Gazal S, Loh PR et al (2020) Liability threshold modeling of case-control status and family history of disease increases association power. Nat Genet 52(5):541–547. https://doi.org/10.1038/s41588-020-0613-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ota M, Nagafuchi Y, Hatano H et al (2021) Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184(11):3006-3021 e17. https://doi.org/10.1016/j.cell.2021.03.056

    Article  CAS  PubMed  Google Scholar 

  110. Mistry P, Nakabo S, O’Neil L et al (2019) Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 116(50):25222–25228. https://doi.org/10.1073/pnas.1908576116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nehar-Belaid D, Hong S, Marches R et al (2020) Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol 21(9):1094–1106. https://doi.org/10.1038/s41590-020-0743-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cotsapas C, Hafler DA (2013) Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol 34(1):22–26. https://doi.org/10.1016/j.it.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  113. Parkes M, Cortes A, van Heel DA et al (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14(9):661–673. https://doi.org/10.1038/nrg3502

    Article  CAS  PubMed  Google Scholar 

  114. Li YR, Li J, Zhao SD et al (2015) Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med 21(9):1018–1027. https://doi.org/10.1038/nm.3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim J, Kim K (2019) Genetic variants differentially associated with rheumatoid arthritis and systemic lupus erythematosus reveal the disease-specific biology. Sci Rep 9(1):2739. https://doi.org/10.1038/s41598-019-39132-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peyrot WJ, Price AL (2021) Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nat Genet 53(4):445–454. https://doi.org/10.1038/s41588-021-00787-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kwon YC, Lim J, Bang SY et al (2020) Genome-wide association study in a Korean population identifies six novel susceptibility loci for rheumatoid arthritis. Ann Rheum Dis 79(11):1438–1445. https://doi.org/10.1136/annrheumdis-2020-217663

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto EA, Jorgensen TN (2019) Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front Immunol 103141.https://doi.org/10.3389/fimmu.2019.03141

  119. Rahbar Saadat Y, Hejazian M, Bastami M et al (2019) The role of microbiota in the pathogenesis of lupus: dose it impact lupus nephritis? Pharmacol Res 139191–198.https://doi.org/10.1016/j.phrs.2018.11.023

  120. Hevia A, Milani C, Lopez P et al (2014) Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5(5):e01548-14. https://doi.org/10.1128/mBio.01548-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. He Z, Shao T, Li H et al (2016) Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog 864.https://doi.org/10.1186/s13099-016-0146-9

Download references

Funding

This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A03038899).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Cheol Bae or Kwangwoo Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Genetics and functional genetics of Autoimmune diseases - Guest Editors: Yukinori Okada & Kazuhiko Yamamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, E., Bae, SC. & Kim, K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 44, 29–46 (2022). https://doi.org/10.1007/s00281-021-00900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00900-w

Keywords

Navigation