Skip to main content

Advertisement

Log in

Systemic sclerosis and localized scleroderma—current concepts and novel targets for therapy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Hoogen F et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72(11):1747–1755

    Article  PubMed  Google Scholar 

  2. Rubio-Rivas M et al (2014) Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum 44(2):208–219

    Article  PubMed  Google Scholar 

  3. Tyndall AJ et al (2010) Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 69(10):1809–1815

    Article  PubMed  Google Scholar 

  4. Kowal-Bielecka O et al (2009) EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann Rheum Dis 68(5):620–628

    Article  PubMed  CAS  Google Scholar 

  5. Kowal-Bielecka O et al (2015) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 74(Suppl 2):90

    Article  Google Scholar 

  6. Beyer C et al (2010) Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum 62(10):2831–2844

    Article  PubMed  CAS  Google Scholar 

  7. Paul SM et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    PubMed  CAS  Google Scholar 

  8. Jordan S, Chung J, Distler O (2013) Preclinical and translational research to discover potentially effective antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol 25(6):679–685

    Article  PubMed  CAS  Google Scholar 

  9. Dobrota R, Mihai C, Distler O (2014) Personalized medicine in systemic sclerosis: facts and promises. Curr Rheumatol Rep 16(6):425

    Article  PubMed  Google Scholar 

  10. Allanore Y, Distler O (2015) Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 11(2):72–74

    Article  PubMed  Google Scholar 

  11. Stasch JP et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410(6825):212–215

    Article  PubMed  CAS  Google Scholar 

  12. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360(19):1989–2003

    Article  PubMed  CAS  Google Scholar 

  13. Ghofrani HA et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369(4):330–340

    Article  PubMed  CAS  Google Scholar 

  14. Beyer C et al (2012) Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann Rheum Dis 71(6):1019–1026

    Article  PubMed  CAS  Google Scholar 

  15. Beyer C et al (2015) Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling. Ann Rheum Dis 74(7):1408–1416

    Article  PubMed  CAS  Google Scholar 

  16. Dees C et al (2015) Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Ann Rheum Dis 74(8):1621–1625

    Article  PubMed  CAS  Google Scholar 

  17. Masuyama H et al (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32(7):597–603

    Article  PubMed  CAS  Google Scholar 

  18. Iwamoto N, Distler JH, Distler O (2011) Tyrosine kinase inhibitors in the treatment of systemic sclerosis: from animal models to clinical trials. Curr Rheumatol Rep 13(1):21–27

    Article  PubMed  CAS  Google Scholar 

  19. Bournia VK, Evangelou K, Sfikakis PP (2013) Therapeutic inhibition of tyrosine kinases in systemic sclerosis: a review of published experience on the first 108 patients treated with imatinib. Semin Arthritis Rheum 42(4):377–390

    Article  PubMed  CAS  Google Scholar 

  20. Daniels CE et al (2010) Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med 181(6):604–610

    Article  PubMed  CAS  Google Scholar 

  21. Hilberg F et al (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68(12):4774–4782

    Article  PubMed  CAS  Google Scholar 

  22. Maurer B et al (2014) Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis 73(10):1880–1887

    Article  PubMed  Google Scholar 

  23. Skhirtladze C et al (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum 58(5):1475–1484

    Article  PubMed  CAS  Google Scholar 

  24. Richeldi L et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082

    Article  PubMed  CAS  Google Scholar 

  25. Huang J et al (2015) Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis doi: 10.1136/annrheumdis-2014-207109

  26. Maurer B, Distler JH, Distler O (2013) The Fra-2 transgenic mouse model of systemic sclerosis. Vasc Pharmacol 58(3):194–201

    Article  CAS  Google Scholar 

  27. Pauling JD, O’Donnell VB, McHugh NJ (2013) The contribution of platelets to the pathogenesis of Raynaud’s phenomenon and systemic sclerosis. Platelets 24(7):503–515

    Article  PubMed  CAS  Google Scholar 

  28. Biondi ML et al (1988) Plasma free and intraplatelet serotonin in patients with Raynaud’s phenomenon. Int J Cardiol 19(3):335–339

    Article  PubMed  CAS  Google Scholar 

  29. Herve P et al (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99(3):249–254

    Article  PubMed  CAS  Google Scholar 

  30. Stachow A, Jablonska S, Skiendzielewska A (1979) Biogenic amines derived from tryptophan in systemic and cutaneous scleroderma. Acta Derm Venereol 59(1):1–5

    PubMed  CAS  Google Scholar 

  31. Dees C et al (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 208(5):961–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fabre A et al (2008) Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J 32(2):426–436

    Article  PubMed  CAS  Google Scholar 

  33. Hauso O et al (2008) The effect of terguride in carbon tetrachloride-induced liver fibrosis in rat. Exp Biol Med (Maywood) 233(11):1385–1388

    Article  CAS  Google Scholar 

  34. Janssen W et al (2015) 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int 2015:438403

    PubMed  PubMed Central  Google Scholar 

  35. De Lauretis A et al (2013) Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J Rheumatol 40(4):435–446

    Article  PubMed  CAS  Google Scholar 

  36. Desallais L et al (2014) Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res Ther 16(4):R157

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khan K et al (2012) Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann Rheum Dis 71(7):1235–1242

    Article  PubMed  CAS  Google Scholar 

  38. Kitaba S et al (2012) Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am J Pathol 180(1):165–176

    Article  PubMed  CAS  Google Scholar 

  39. Le Huu D et al (2012) IL-6 blockade attenuates the development of murine sclerodermatous chronic graft-versus-host disease. J Invest Dermatol 132(12):2752–2761

    Article  PubMed  CAS  Google Scholar 

  40. Le TT et al (2014) Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis. J Immunol 193(7):3755–3768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pedroza M et al (2011) Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One 6(7), e22667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khanna D et al (2015) Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis: week 48 data from the FASSCINATE trial. Ann Rheum Dis 74(Suppl2):87

    Google Scholar 

  43. Murray KJ, Laxer RM (2002) Scleroderma in children and adolescents. Rheum Dis Clin N Am 28(3):603–624

    Article  Google Scholar 

  44. Peterson LS, Nelson AM, Su WP (1995) Classification of morphea (localized scleroderma). Mayo Clin Proc 70(11):1068–1076

    Article  PubMed  CAS  Google Scholar 

  45. Kreuter A et al (2009) AWMF guideline no. 013/066. Diagnosis and therapy of circumscribed scleroderma. J Dtsch Dermatol Ges 7(Suppl 6):S1–S14

    PubMed  Google Scholar 

  46. Weibel L, Harper JI (2008) Linear morphoea follows Blaschko’s lines. Br J Dermatol 159(1):175–181

    Article  PubMed  CAS  Google Scholar 

  47. Blaszczyk M et al (2003) Progressive facial hemiatrophy: central nervous system involvement and relationship with scleroderma en coup de sabre. J Rheumatol 30(9):1997–2004

    PubMed  Google Scholar 

  48. Tollefson MM, Witman PM (2007) En coup de sabre morphea and Parry-Romberg syndrome: a retrospective review of 54 patients. J Am Acad Dermatol 56(2):257–263

    Article  PubMed  Google Scholar 

  49. Zulian F et al (2006) Juvenile localized scleroderma: clinical and epidemiological features in 750 children. An international study. Rheumatology (Oxford) 45(5):614–620

    Article  CAS  Google Scholar 

  50. Mertens JS et al (2015) Disease recurrence in localized scleroderma: a retrospective analysis of 344 patients with paediatric- or adult-onset disease. Br J Dermatol 172(3):722–728

    Article  PubMed  CAS  Google Scholar 

  51. Leitenberger JJ et al (2009) Distinct autoimmune syndromes in morphea: a review of 245 adult and pediatric cases. Arch Dermatol 145(5):545–550

    Article  PubMed  PubMed Central  Google Scholar 

  52. Eisendle K, Grabner T, Zelger B (2007) Morphoea: a manifestation of infection with Borrelia species? Br J Dermatol 157(6):1189–1198

    Article  PubMed  CAS  Google Scholar 

  53. Dillon WI, Saed GM, Fivenson DP (1995) Borrelia burgdorferi DNA is undetectable by polymerase chain reaction in skin lesions of morphea, scleroderma, or lichen sclerosus et atrophicus of patients from North America. J Am Acad Dermatol 33(4):617–620

    Article  PubMed  CAS  Google Scholar 

  54. Horger M et al (2008) MRI findings in deep and generalized morphea (localized scleroderma). AJR Am J Roentgenol 190(1):32–39

    Article  PubMed  Google Scholar 

  55. Kirchgesner T et al (2015) Eosinophilic fasciitis: typical abnormalities, variants and differential diagnosis of fasciae abnormalities using MR imaging. Diagn Interv Imaging 96(4):341–348

    Article  PubMed  CAS  Google Scholar 

  56. Zwischenberger BA, Jacobe HT (2011) A systematic review of morphea treatments and therapeutic algorithm. J Am Acad Dermatol 65(5):925–941

    Article  PubMed  CAS  Google Scholar 

  57. Kroft EB et al (2009) Efficacy of topical tacrolimus 0.1% in active plaque morphea: randomized, double-blind, emollient-controlled pilot study. Am J Clin Dermatol 10(3):181–187

    Article  PubMed  Google Scholar 

  58. Mancuso G, Berdondini RM (2005) Localized scleroderma: response to occlusive treatment with tacrolimus ointment. Br J Dermatol 152(1):180–182

    Article  PubMed  CAS  Google Scholar 

  59. Stefanaki C et al (2008) Topical tacrolimus 0.1% ointment in the treatment of localized scleroderma. An open label clinical and histological study. J Dermatol 35(11):712–718

    Article  PubMed  Google Scholar 

  60. Cunningham BB et al (1998) Topical calcipotriene for morphea/linear scleroderma. J Am Acad Dermatol 39(2 Pt 1):211–215

    Article  PubMed  CAS  Google Scholar 

  61. Pope E et al (2011) Topical imiquimod 5% cream for pediatric plaque morphea: a prospective, multiple-baseline, open-label pilot study. Dermatology 223(4):363–369

    Article  PubMed  CAS  Google Scholar 

  62. Kreuter A et al (2006) A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. J Am Acad Dermatol 54(3):440–447

    Article  PubMed  Google Scholar 

  63. Gordon Spratt EA et al (2015) Phototherapy, photodynamic therapy and photophoresis in the treatment of connective-tissue diseases: a review. Br J Dermatol 173(1):19–30

    Article  PubMed  CAS  Google Scholar 

  64. Vasquez R et al (2014) Recurrence of morphea after successful ultraviolet A1 phototherapy: a cohort study. J Am Acad Dermatol 70(3):481–488

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fett N, Werth VP (2011) Update on morphea: part II. Outcome measures and treatment. J Am Acad Dermatol 64(2):231–42, quiz 243–4

    Article  PubMed  Google Scholar 

  66. Joly P et al (1994) Treatment of severe forms of localized scleroderma with oral corticosteroids: follow-up study on 17 patients. Arch Dermatol 130(5):663–664

    Article  PubMed  CAS  Google Scholar 

  67. Zulian F et al (2011) Methotrexate treatment in juvenile localized scleroderma: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 63(7):1998–2006

    Article  PubMed  CAS  Google Scholar 

  68. Uziel Y et al (2000) Methotrexate and corticosteroid therapy for pediatric localized scleroderma. J Pediatr 136(1):91–95

    Article  PubMed  CAS  Google Scholar 

  69. Kreuter A et al (2005) Pulsed high-dose corticosteroids combined with low-dose methotrexate in severe localized scleroderma. Arch Dermatol 141(7):847–852

    Article  PubMed  CAS  Google Scholar 

  70. Weibel L et al (2006) Evaluation of methotrexate and corticosteroids for the treatment of localized scleroderma (morphoea) in children. Br J Dermatol 155(5):1013–1020

    Article  PubMed  CAS  Google Scholar 

  71. Neustadter JH et al (2009) Extracorporeal photochemotherapy for generalized deep morphea. Arch Dermatol 145(2):127–130

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pileri A et al (2014) Generalized morphea successfully treated with extracorporeal photochemotherapy (ECP). Dermatol Online J 20(1):21258

    PubMed  CAS  Google Scholar 

  73. Schlaak M et al (2008) Successful therapy of a patient with therapy recalcitrant generalized bullous scleroderma by extracorporeal photopheresis and mycophenolate mofetil. J Eur Acad Dermatol Venereol 22(5):631–633

    Article  PubMed  CAS  Google Scholar 

  74. Alecu M et al (1998) The interleukin-1, interleukin-2, interleukin-6 and tumour necrosis factor alpha serological levels in localised and systemic sclerosis. Rom J Intern Med 36(3–4):251–259

    PubMed  CAS  Google Scholar 

  75. Ihn H et al (1995) Demonstration of interleukin-2, interleukin-4 and interleukin-6 in sera from patients with localized scleroderma. Arch Dermatol Res 287(2):193–197

    Article  PubMed  CAS  Google Scholar 

  76. Nagaoka T et al (2000) Serum levels of soluble interleukin 6 receptor and soluble gp130 are elevated in patients with localized scleroderma. J Rheumatol 27(8):1917–1921

    PubMed  CAS  Google Scholar 

  77. Zheng XY et al (1998) Expression of platelet-derived growth factor B-chain and platelet-derived growth factor beta-receptor in fibroblasts of scleroderma. J Dermatol Sci 18(2):90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Distler.

Additional information

This article is a contribution to the Special Issue on Advances in Immunodermatology - Guest Editors: Lars French and Alexander Navarini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Distler, O., Cozzio, A. Systemic sclerosis and localized scleroderma—current concepts and novel targets for therapy. Semin Immunopathol 38, 87–95 (2016). https://doi.org/10.1007/s00281-015-0551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0551-z

Keywords

Navigation