Skip to main content

Advertisement

Log in

Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Diabetes mellitus and obesity, which is a major risk factor in the development of type 2 diabetes mellitus, have reached epidemic proportions worldwide including the USA. The current statistics and forecasts, both short- and long-term, are alarming and predict severe problems in the near future. Therefore, there is a race for developing new compounds, discovering new receptors, or finding alternative solutions to prevent and/or treat the symptoms and complications related to obesity and diabetes mellitus. It is well demonstrated that members of the transient receptor potential (TRP) superfamily play a crucial role in a variety of biological functions both in health and disease. In the recent years, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) were shown to have beneficial effects on whole body metabolism including glucose homeostasis. TRPV1 and TRPA1 have been associated with control of weight, pancreatic function, hormone secretion, thermogenesis, and neuronal function, which suggest a potential therapeutic value of these channels. This review summarizes recent findings regarding TRPV1 and TRPA1 in association with whole body metabolism with emphasis on obese and diabetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, Dietz W (2012) Obesity and severe obesity forecasts through 2030. Am J Prev Med 42:563–70

    Article  PubMed  Google Scholar 

  2. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814

    Article  PubMed  Google Scholar 

  3. Zsombok A (2013) Vanilloid receptors—do they have a role in whole body metabolism? Evidence from TRPV1. J Diabetes Complications 27:287–92

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271:1827–34

    Article  Google Scholar 

  5. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM (2006) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–35

    Article  CAS  PubMed  Google Scholar 

  6. Suri A, Szallasi A (2008) The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci 29:29–36

    Article  CAS  PubMed  Google Scholar 

  7. Tsui H, Paltser G, Chan Y, Dorfman R, Dosch HM (2011) ‘Sensing’ the link between type 1 and type 2 diabetes. Diabetes Metab Res Rev 27:913–8

    Article  CAS  PubMed  Google Scholar 

  8. Wang P, Yan Z, Zhong J, Chen J, Ni Y, Li L, Ma L, Zhao Z, Liu D, Zhu Z (2012) Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes 61:2155–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawada T, Hagihara K, Iwai K (1986) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 116:1272–8

    CAS  PubMed  Google Scholar 

  10. Westerterp-Plantenga MS, Smeets A, Lejeune MP (2005) Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes (Lond) 29:682–8

    Article  CAS  Google Scholar 

  11. Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M, Tremblay A (1999) Effects of red pepper on appetite and energy intake. Br J Nutr 82:115–23

    CAS  PubMed  Google Scholar 

  12. Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213–23

    Article  PubMed  Google Scholar 

  13. Chaiyasit K, Khovidhunkit W, Wittayalertpanya S (2009) Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J Med Assoc Thai 92:108–13

    PubMed  Google Scholar 

  14. Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–25

    Article  CAS  PubMed  Google Scholar 

  15. Smeets AJ, Westerterp-Plantenga MS (2009) The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Eur J Nutr 48:229–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang JH, Tsuyoshi G, Le Ngoc H, Kim HM, Tu TH, Noh HJ, Kim CS, Choe SY, Kawada T, Yoo H, Yu R (2011) Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J Med Food 14:310–5

    Article  CAS  PubMed  Google Scholar 

  17. Lee E, Jung DY, Kim JH, Patel PR, Hu X, Lee Y, Azuma Y, Wang HF, Tsitsilianos N, Shafiq U, Kwon JY, Lee HJ, Lee KW, Kim JK (2015) Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J 29:3182–92

    Article  CAS  PubMed  Google Scholar 

  18. Tsui H, Razavi R, Chan Y, Yantha J, Dosch HM (2007) ‘Sensing’ autoimmunity in type 1 diabetes. Trends Mol Med 13:405–13

    Article  CAS  PubMed  Google Scholar 

  19. Carnethon MR, Golden SH, Folsom AR, Haskell W, Liao D (2003) Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: the Atherosclerosis Risk in Communities study, 1987–1998. Circulation 107:2190–5

    Article  PubMed  Google Scholar 

  20. Gao H, Miyata K, Bhaskaran MD, Derbenev AV, Zsombok A (2012) Transient receptor potential vanilloid type 1-dependent regulation of liver-related neurons in the paraventricular nucleus of the hypothalamus diminished in the type 1 diabetic mouse. Diabetes 61:1381–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo F, Zhu ZM, Tepel M (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–70

    Article  CAS  PubMed  Google Scholar 

  22. Kang JH, Goto T, Han IS, Kawada T, Kim YM, Yu R (2010) Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring) 18:780–7

    Article  CAS  Google Scholar 

  23. Lee GR, Shin MK, Yoon DJ, Kim AR, Yu R, Park NH, Han IS (2013) Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity (Silver Spring) 21:115–22

    Article  Google Scholar 

  24. Ohyama K, Nogusa Y, Suzuki K, Shinoda K, Kajimura S, Bannai M (2015) A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice. Am J Physiol Endocrinol Metab 308:E315–23

    Article  CAS  PubMed  Google Scholar 

  25. Motter AL, Ahern GP (2008) TRPV1-null mice are protected from diet-induced obesity. FEBS Lett 582:2257–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloomer RJ, Canale RE, Shastri S, Suvarnapathki S (2010) Effect of oral intake of capsaicinoid beadlets on catecholamine secretion and blood markers of lipolysis in healthy adults: a randomized, placebo controlled, double-blind, cross-over study. Lipids Health Dis 9:72

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roberts K, Shenoy R, Anand P (2011) A novel human volunteer pain model using contact heat evoked potentials (CHEP) following topical skin application of transient receptor potential agonists capsaicin, menthol and cinnamaldehyde. J Clin Neurosci 18:926–32

    Article  CAS  PubMed  Google Scholar 

  28. Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131:682–91

    CAS  PubMed  Google Scholar 

  29. Ono K, Tsukamoto-Yasui M, Hara-Kimura Y, Inoue N, Nogusa Y, Okabe Y, Nagashima K, Kato F (2011) Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses. J Appl Physiol (1985) 110:789–98

    Article  CAS  Google Scholar 

  30. Lu T, Sheng H, Wu J, Cheng Y, Zhu J, Chen Y (2012) Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutr Res 32:408–12

    Article  CAS  PubMed  Google Scholar 

  31. Davis PA, Yokoyama W (2011) Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 14:884–9

    Article  CAS  PubMed  Google Scholar 

  32. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26:3215–8

    Article  PubMed  Google Scholar 

  33. Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A (2006) Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest 36:340–4

    Article  CAS  PubMed  Google Scholar 

  34. Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ (2006) Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 136:977–80

    CAS  PubMed  Google Scholar 

  35. Chase CK, McQueen CE (2007) Cinnamon in diabetes mellitus. Am J Health Syst Pharm 64:1033–5

    Article  CAS  PubMed  Google Scholar 

  36. Rafehi H, Ververis K, Karagiannis TC (2012) Controversies surrounding the clinical potential of cinnamon for the management of diabetes. Diabetes Obes Metab 14:493–9

    Article  CAS  PubMed  Google Scholar 

  37. Imparl-Radosevich J, Deas S, Polansky MM, Baedke DA, Ingebritsen TS, Anderson RA, Graves DJ (1998) Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications for cinnamon regulation of insulin signalling. Horm Res 50:177–82

    Article  CAS  PubMed  Google Scholar 

  38. Cao H, Polansky MM, Anderson RA (2007) Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys 459:214–22

    Article  CAS  PubMed  Google Scholar 

  39. Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y (2003) Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract 62:139–48

    Article  PubMed  Google Scholar 

  40. Huang B, Yuan HD, Kim Do Y, Quan HY, Chung SH (2011) Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-gamma (PPARgamma) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59:3666–73

    Article  CAS  PubMed  Google Scholar 

  41. Qin B, Dawson H, Polansky MM, Anderson RA (2009) Cinnamon extract attenuates TNF-alpha-induced intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes. Horm Metab Res 41:516–22

    Article  CAS  PubMed  Google Scholar 

  42. Numazawa S, Takase M, Ahiko T, Ishii M, Shimizu S, Yoshida T (2012) Possible involvement of transient receptor potential channels in electrophile-induced insulin secretion from RINm5F cells. Biol Pharm Bull 35:346–54

    Article  CAS  PubMed  Google Scholar 

  43. Emery EC, Diakogiannaki E, Gentry C, Psichas A, Habib AM, Bevan S, Fischer MJ, Reimann F, Gribble FM (2015) Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes 64:1202–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Camacho S, Michlig S, de Senarclens-Bezencon C, Meylan J, Meystre J, Pezzoli M, Markram H, le Coutre J (2015) Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci Rep 5:7919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sartorius T, Peter A, Schulz N, Drescher A, Bergheim I, Machann J, Schick F, Siegel-Axel D, Schurmann A, Weigert C, Haring HU, Hennige AM (2014) Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity. PLoS One 9:e92358

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ahn J, Lee H, Im SW, Jung CH, Ha TY (2014) Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function. J Nutr Biochem 25:1026–34

    Article  CAS  PubMed  Google Scholar 

  47. Jiao L, Zhang X, Huang L, Gong H, Cheng B, Sun Y, Li Y, Liu Q, Zheng L, Huang K (2013) Proanthocyanidins are the major anti-diabetic components of cinnamon water extract. Food Chem Toxicol 56:398–405

    Article  CAS  PubMed  Google Scholar 

  48. Zhang W, Xu YC, Guo FJ, Meng Y, Li ML (2008) Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin Med J (Engl) 121:2124–8

    CAS  Google Scholar 

  49. Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E (2010) Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci 1212:114–29

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Morton GJ, Myers MG, D'Alessio D (2013) Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Licht CM, Vreeburg SA, van Reedt Dortland AK, Giltay EJ, Hoogendijk WJ, DeRijk RH, Vogelzangs N, Zitman FG, de Geus EJ, Penninx BW (2010) Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab 95:2458–66

    Article  CAS  PubMed  Google Scholar 

  52. Wulsin LR, Horn PS, Perry JL, Massaro JM, D'Agostino RB (2015) Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab 100:2443–8

    Article  CAS  PubMed  Google Scholar 

  53. Zsombok A, Smith BN (2009) Plasticity of central autonomic neural circuits in diabetes. Biochim Biophys Acta 1792:423–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laury MC, Takao F, Bailbe D, Penicaud L, Portha B, Picon L, Ktorza A (1991) Differential effects of prolonged hyperglycemia on in vivo and in vitro insulin secretion in rats. Endocrinol 128:2526–33

    Article  CAS  Google Scholar 

  55. Ahren B, Sundkvist G, Mulder H, Sundler F (1996) Blockade of muscarinic transmission increases the frequency of diabetes after low-dose alloxan challenge in the mouse. Diabetologia 39:383–90

    Article  CAS  PubMed  Google Scholar 

  56. Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM (2004) Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 24:7604–13

    Article  CAS  PubMed  Google Scholar 

  57. Yox DP, Stokesberry H, Ritter RC (1991) Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol 260:R681–7

    CAS  PubMed  Google Scholar 

  58. Baboota RK, Murtaza N, Jagtap S, Singh DP, Karmase A, Kaur J, Bhutani KK, Boparai RK, Premkumar LS, Kondepudi KK, Bishnoi M (2014) Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. J Nutr Biochem 25:893–902

    Article  CAS  PubMed  Google Scholar 

  59. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31:5067–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139:1405–15

    Article  CAS  PubMed  Google Scholar 

  61. Zsombok A, Gao H, Miyata K, Issa A, Derbenev AV (2011) Immunohistochemical localization of transient receptor potential vanilloid type 1 and insulin receptor substrate 2 and their co-localization with liver-related neurons in the hypothalamus and brainstem. Brain Res 1398:30–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doyle MW, Bailey TW, Jin YH, Andresen MC (2002) Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22:8222–9

    CAS  PubMed  Google Scholar 

  63. Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC (2010) Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65:657–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Derbenev AV, Monroe MJ, Glatzer NR, Smith BN (2006) Vanilloid-mediated heterosynaptic facilitation of inhibitory synaptic input to neurons of the rat dorsal motor nucleus of the vagus. J Neurosci 26:9666–72

    Article  CAS  PubMed  Google Scholar 

  65. Zsombok A, Bhaskaran MD, Gao H, Derbenev AV, Smith BN (2011) Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci 31:14024–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anwar IJ, Derbenev AV (2013) TRPV1-dependent regulation of synaptic activity in the mouse dorsal motor nucleus of the vagus nerve. Front Neurosci 7:238

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zsombok A, Jiang Y, Gao H, Anwar IJ, Rezai-Zadeh K, Enix CL, Munzberg H, Derbenev AV (2014) Regulation of leptin receptor-expressing neurons in the brainstem by TRPV1. Physiol Rep 2

  68. Boychuk CR, Zsombok A, Tasker JG, Smith BN (2013) Rapid glucocorticoid-induced activation of TRP and CB1 receptors causes biphasic modulation of glutamate release in gastric-related hypothalamic preautonomic neurons. Front Neurosci 7:3

    PubMed  PubMed Central  Google Scholar 

  69. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–57

    Article  CAS  PubMed  Google Scholar 

  70. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yokoyama T, Ohbuchi T, Saito T, Sudo Y, Fujihara H, Minami K, Nagatomo T, Uezono Y, Ueta Y (2011) Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats. Eur J Pharmacol 655:31–7

    Article  CAS  PubMed  Google Scholar 

  73. Sun B, Bang SI, Jin YH (2009) Transient receptor potential A1 increase glutamate release on brain stem neurons. Neuroreport 20:1002–6

    Article  CAS  PubMed  Google Scholar 

  74. Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 7:e38005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anand P, Murali KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 186:72–81

    Article  CAS  PubMed  Google Scholar 

  77. Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704:15–22

    Article  CAS  PubMed  Google Scholar 

  78. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106:3408–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doihara H, Nozawa K, Kawabata-Shoda E, Kojima R, Yokoyama T, Ito H (2009) TRPA1 agonists delay gastric emptying in rats through serotonergic pathways. Naunyn Schmiedebergs Arch Pharmacol 380:353–7

    Article  CAS  PubMed  Google Scholar 

  80. Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, Tschop MH, D'Alessio D (2010) Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59:2145–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim MJ, Son HJ, Song SH, Jung M, Kim Y, Rhyu MR (2013) The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying. PLoS One 8:e71603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tamura Y, Iwasaki Y, Narukawa M, Watanabe T (2012) Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet. J Nutr Sci Vitaminol (Tokyo) 58:9–13

    Article  CAS  Google Scholar 

  83. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yoshida T, Yoshioka K, Wakabayashi Y, Nishioka H, Kondo M (1988) Effects of capsaicin and isothiocyanate on thermogenesis of interscapular brown adipose tissue in rats. J Nutr Sci Vitaminol (Tokyo) 34:587–94

    Article  CAS  Google Scholar 

  85. Masamoto Y, Kawabata F, Fushiki T (2009) Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice. Biosci Biotechnol Biochem 73:1021–7

    Article  CAS  PubMed  Google Scholar 

  86. Iwasaki Y, Tamura Y, Inayoshi K, Narukawa M, Kobata K, Chiba H, Muraki E, Tsunoda N, Watanabe T (2011) TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet. Biosci Biotechnol Biochem 75:904–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the National Institutes of Health (R01 DK099598 for AZs and HL122829 for AVD).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zsombok.

Additional information

This article is a contribution to the Special Issue on the Role of TRP Ion Channels in Physiology and Pathology - Guest Editor: Armen Akopian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbenev, A.V., Zsombok, A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 38, 397–406 (2016). https://doi.org/10.1007/s00281-015-0529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0529-x

Keywords

Navigation