Skip to main content

Advertisement

Log in

Taking the lymphatic route: dendritic cell migration to draining lymph nodes

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

In contrast to leukocyte migration through blood vessels, trafficking via lymphatic vessels (LVs) is much less well characterized. An important cell type migrating via this route is antigen-presenting dendritic cells (DCs), which are key for the induction of protective immunity as well as for the maintenance of immunological tolerance. In this review, we will summarize and discuss current knowledge of the cellular and molecular events that control DC migration from the skin towards, into, and within LVs, followed by DC arrival and migration in draining lymph nodes. Finally, we will discuss potential strategies to therapeutically target this migratory step to modulate immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T et al (2007) Dendritic cell subsets in health and disease. Immunol Rev 219:118–142

    PubMed  CAS  Google Scholar 

  3. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39:38–48

    PubMed  CAS  Google Scholar 

  4. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604

    PubMed  CAS  Google Scholar 

  5. Mellman I, Nussenzweig M (2011) Retrospective. Ralph M. Steinman (1943–2011). Science 334:466

    PubMed  CAS  Google Scholar 

  6. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783

    PubMed  CAS  Google Scholar 

  7. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476

    PubMed  CAS  Google Scholar 

  8. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Grigorova IL, Panteleev M, Cyster JG (2010) Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci U S A 107:20447–20452

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    PubMed  CAS  Google Scholar 

  11. Girard JP, Moussion C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773

    PubMed  CAS  Google Scholar 

  12. Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206:2925–2935

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55

    PubMed  Google Scholar 

  14. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475

    PubMed  CAS  Google Scholar 

  16. Vigl B, Aebischer D, Nitschke M, Iolyeva M, Rothlin T, Antsiferova O et al (2011) Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118:205–215

    PubMed  CAS  Google Scholar 

  17. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF et al (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–332

    PubMed  CAS  Google Scholar 

  18. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR et al (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769

    PubMed  CAS  Google Scholar 

  19. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    PubMed  CAS  Google Scholar 

  20. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J et al (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288

    PubMed  CAS  Google Scholar 

  21. de Paz JL, Moseman EA, Noti C, Polito L, von Andrian UH, Seeberger PH (2007) Profiling heparin-chemokine interactions using synthetic tools. ACS Chem Biol 2:735–744

    PubMed Central  PubMed  Google Scholar 

  22. Bao X, Moseman EA, Saito H, Petryniak B, Thiriot A, Hatakeyama S et al (2010) Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33:817–829

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612

    PubMed  CAS  Google Scholar 

  24. Vassileva G, Soto H, Zlotnik A, Nakano H, Kakiuchi T, Hedrick JA et al (1999) The reduced expression of 6Ckine in the plt mouse results from the deletion of one of two 6Ckine genes. J Exp Med 190:1183–1188

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A 97:12694–12699

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT et al (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    PubMed  Google Scholar 

  28. Schmidt SV, Nino-Castro AC, Schultze JL (2012) Regulatory dendritic cells: there is more than just immune activation. Front Immunol 3:274

    PubMed Central  PubMed  Google Scholar 

  29. Davalos-Misslitz AC, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G et al (2007) Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol 37:613–622

    PubMed  CAS  Google Scholar 

  30. Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10:1237–1244

    PubMed  CAS  Google Scholar 

  31. Helft J, Ginhoux F, Bogunovic M, Merad M (2010) Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 234:55–75

    PubMed  CAS  Google Scholar 

  32. Ginhoux F, Merad M (2010) Ontogeny and homeostasis of Langerhans cells. Immunol Cell Biol 88:387–392

    PubMed  Google Scholar 

  33. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I et al (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141

    PubMed  CAS  Google Scholar 

  34. Sere K, Baek JH, Ober-Blobaum J, Muller-Newen G, Tacke F, Yokota Y et al (2012) Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37:905–916

    PubMed  CAS  Google Scholar 

  35. Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14:978–985

    PubMed  CAS  Google Scholar 

  36. Clausen BE, Kel JM (2010) Langerhans cells: critical regulators of skin immunity? Immunol Cell Biol 88:351–360

    PubMed  CAS  Google Scholar 

  37. MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Johnson LA, Jackson DG (2013) The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J Cell Sci 126:5259–5270

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Teijeira A, Garasa S, Pelaez R, Azpilikueta A, Ochoa C, Marre D et al (2013) Lymphatic endothelium forms Integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels. J Invest Dermatol 133:2276–2285

    PubMed  CAS  Google Scholar 

  40. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR et al (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37:276–289

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    PubMed  CAS  Google Scholar 

  42. Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203:2763–2777

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B et al (2012) Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120:2249–2258

    PubMed  CAS  Google Scholar 

  44. Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y et al (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206:623–635

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Li JL, Goh CC, Keeble JL, Qin JS, Roediger B, Jain R et al (2012) Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat Protoc 7:221–234

    PubMed  CAS  Google Scholar 

  46. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG et al (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208:2141–2153

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Sen D, Forrest L, Kepler TB, Parker I, Cahalan MD (2010) Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proc Natl Acad Sci U S A 107:8334–8339

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J et al (2011) Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12:879–887

    PubMed  CAS  Google Scholar 

  49. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N et al (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    PubMed  CAS  Google Scholar 

  50. Gaiser MR, Lammermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L et al (2012) Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A 109:E889–E897

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S (2008) CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol 38:3050–3059

    PubMed  CAS  Google Scholar 

  52. Noirey N, Staquet MJ, Gariazzo MJ, Serres M, Andre C, Schmitt D et al (2002) Relationship between expression of matrix metalloproteinases and migration of epidermal and in vitro generated Langerhans cells. Eur J Cell Biol 81:383–389

    PubMed  CAS  Google Scholar 

  53. Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C et al (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168:4361–4371

    PubMed  CAS  Google Scholar 

  54. Sixt M (2011) Interstitial locomotion of leukocytes. Immunol Lett 138:32–34

    PubMed  CAS  Google Scholar 

  55. Benvenuti F, Hugues S, Walmsley M, Ruf S, Fetler L, Popoff M et al (2004) Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305:1150–1153

    PubMed  CAS  Google Scholar 

  56. Lammermann T, Renkawitz J, Wu X, Hirsch K, Brakebusch C, Sixt M (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113:5703–5710

    PubMed  Google Scholar 

  57. Frittoli E, Matteoli G, Palamidessi A, Mazzini E, Maddaluno L, Disanza A et al (2011) The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35:388–399

    PubMed Central  PubMed  CAS  Google Scholar 

  58. de Noronha S, Hardy S, Sinclair J, Blundell MP, Strid J, Schulz O et al (2005) Impaired dendritic-cell homing in vivo in the absence of Wiskott–Aldrich syndrome protein. Blood 105:1590–1597

    PubMed  Google Scholar 

  59. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P et al (2008) Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog 4:e1000222

    PubMed Central  PubMed  Google Scholar 

  61. Shklovskaya E, Roediger B, Fazekas de St Groth B (2008) Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J Immunol 181:418–430

    PubMed  CAS  Google Scholar 

  62. Johnson LA, Jackson DG (2010) Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 22:839–849

    PubMed  CAS  Google Scholar 

  63. Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ (2000) The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103:757–768

    PubMed  CAS  Google Scholar 

  64. Britschgi MR, Favre S, Luther SA (2010) CCL21 is sufficient to mediate DC migration, maturation and function in the absence of CCL19. Eur J Immunol 40:1266–1271

    PubMed  CAS  Google Scholar 

  65. Czeloth N, Bernhardt G, Hofmann F, Genth H, Forster R (2005) Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 175:2960–2967

    PubMed  CAS  Google Scholar 

  66. Rathinasamy A, Czeloth N, Pabst O, Forster R, Bernhardt G (2010) The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration. J Immunol 185:4072–4081

    PubMed  CAS  Google Scholar 

  67. Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R et al (2009) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27

    PubMed  Google Scholar 

  68. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–931

    PubMed  CAS  Google Scholar 

  69. Torzicky M, Viznerova P, Richter S, Strobl H, Scheinecker C, Foedinger D et al (2012) Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells. J Invest Dermatol 132:1149–1157

    PubMed  CAS  Google Scholar 

  70. Teijeira A, Palazon A, Garasa S, Marre D, Auba C, Rogel A et al (2012) CD137 on inflamed lymphatic endothelial cells enhances CCL21-guided migration of dendritic cells. FASEB J Off Publ Fed Am Soc Exp Biol 26:3380–3392

    CAS  Google Scholar 

  71. Ma J, Wang JH, Guo YJ, Sy MS, Bigby M (1994) In vivo treatment with anti-ICAM-1 and anti-LFA-1 antibodies inhibits contact sensitization-induced migration of epidermal Langerhans cells to regional lymph nodes. Cell Immunol 158:389–399

    PubMed  CAS  Google Scholar 

  72. Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH et al (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11:594–600

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11:366–378

    PubMed  CAS  Google Scholar 

  74. Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP et al (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32:703–713

    PubMed  CAS  Google Scholar 

  75. Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M et al (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171:1249–1257

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Galanzha EI, Tuchin VV, Zharov VP (2005) In vivo integrated flow image cytometry and lymph/blood vessels dynamic microscopy. J Biomed Opt 10:054018

    PubMed  Google Scholar 

  77. Dixon JB, Zawieja DC, Gashev AA, Cote GL (2005) Measuring microlymphatic flow using fast video microscopy. J Biomed Opt 10:064016

    PubMed  Google Scholar 

  78. Dixon JB, Greiner ST, Gashev AA, Cote GL, Moore JE, Zawieja DC (2006) Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13:597–610

    PubMed  Google Scholar 

  79. Akl TJ, Nagai T, Cote GL, Gashev AA (2011) Mesenteric lymph flow in adult and aged rats. Am J Physiol Heart Circ Physiol 301:H1828–H1840

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Swartz MA, Berk DA, Jain RK (1996) Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am J Physiol 270:H324–H329

    PubMed  CAS  Google Scholar 

  81. Berk DA, Swartz MA, Leu AJ, Jain RK (1996) Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am J Physiol 270:H330–H337

    PubMed  CAS  Google Scholar 

  82. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M et al (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203–215

    PubMed  CAS  Google Scholar 

  83. Aebischer D, Iolyeva M, Halin C (2013) The inflammatory response of lymphatic endothelium. Angiogenesis. doi:10.1007/s10456-013-9404-3

    PubMed  Google Scholar 

  84. Moussion C, Girard JP (2011) Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:542–546

    PubMed  CAS  Google Scholar 

  85. Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K et al (2011) Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 35:945–957

    PubMed  CAS  Google Scholar 

  86. Verdijk P, Aarntzen EH, Punt CJ, de Vries IJ, Figdor CG (2008) Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 8:865–874

    PubMed  CAS  Google Scholar 

  87. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    PubMed  CAS  Google Scholar 

  88. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345

    PubMed  CAS  Google Scholar 

  89. Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiammenghi L et al (2004) Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2:27

    PubMed Central  PubMed  Google Scholar 

  90. de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100

    PubMed  Google Scholar 

  91. Scandella E, Men Y, Gillessen S, Forster R, Groettrup M (2002) Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100:1354–1361

    PubMed  CAS  Google Scholar 

  92. Del Prete A, Shao WH, Mitola S, Santoro G, Sozzani S, Haribabu B (2007) Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood 109:626–631

    PubMed Central  PubMed  Google Scholar 

  93. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142

    PubMed  CAS  Google Scholar 

  94. Hansen M, Met O, Svane IM, Andersen MH (2012) Cellular based cancer vaccines: type 1 polarization of dendritic cells. Curr Med Chem 19:4239–4246

    PubMed  CAS  Google Scholar 

  95. Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M et al (2001) Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98:3022–3029

    PubMed  CAS  Google Scholar 

  96. Rouzaut A, Garasa S, Teijeira A, Gonzalez I, Martinez-Forero I, Suarez N et al (2010) Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-alpha. Eur J Immunol 40:3054–3063

    PubMed  CAS  Google Scholar 

  97. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Nair S, McLaughlin C, Weizer A, Su Z, Boczkowski D, Dannull J et al (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol 171:6275–6282

    PubMed  CAS  Google Scholar 

  99. Prins RM, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R et al (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176:157–164

    PubMed  CAS  Google Scholar 

  100. Colvin BL, Matta BM, Thomson AW (2008) Dendritic cells and chemokine-directed migration in transplantation: where are we headed? Clin Lab Med 28:375–384

    PubMed Central  PubMed  Google Scholar 

  101. Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW et al (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10:813–815

    PubMed  CAS  Google Scholar 

  102. Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G et al (2010) Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol 184:535–539

    PubMed  CAS  Google Scholar 

  103. Yin N, Zhang N, Xu J, Shi Q, Ding Y, Bromberg JS (2011) Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92:25–30

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Wang L, Han R, Lee I, Hancock AS, Xiong G, Gunn MD et al (2005) Permanent survival of fully MHC-mismatched islet allografts by targeting a single chemokine receptor pathway. J Immunol 175:6311–6318

    PubMed  CAS  Google Scholar 

  105. Fiorina P, Jurewicz M, Tanaka K, Behazin N, Augello A, Vergani A et al (2007) Characterization of donor dendritic cells and enhancement of dendritic cell efflux with CC-chemokine ligand 21: a novel strategy to prolong islet allograft survival. Diabetes 56:912–920

    PubMed  CAS  Google Scholar 

  106. Ziegler E, Gueler F, Rong S, Mengel M, Witzke O, Kribben A et al (2006) CCL19-IgG prevents allograft rejection by impairment of immune cell trafficking. J Am Soc Nephrol 17:2521–2532

    PubMed  CAS  Google Scholar 

  107. Larsen CP, Morris PJ, Austyn JM (1990) Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 171:307–314

    PubMed  CAS  Google Scholar 

  108. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (grant 310030_138330) and by a Swiss Government Excellence Scholarship (awarded to A. Teijeira).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Halin.

Additional information

This article is a contribution to the special issue on New paradigms in leukocyte trafficking, lessons for therapeutics - Guest Editors: F. W. Luscinskas and B. A. Imhof

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teijeira, A., Russo, E. & Halin, C. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin Immunopathol 36, 261–274 (2014). https://doi.org/10.1007/s00281-013-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-013-0410-8

Keywords

Navigation