Skip to main content

Advertisement

Log in

The role of PGE2-associated inflammatory responses in gastric cancer development

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E2 (PGE2), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE2 receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE2-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE2-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE2 pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE2 pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE2-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE2-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE2-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248:171–183

    Article  PubMed  CAS  Google Scholar 

  2. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell 17:89–97

    Article  PubMed  CAS  Google Scholar 

  4. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  PubMed  CAS  Google Scholar 

  5. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  6. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  7. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  8. Wang D, DuBois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    Article  PubMed  CAS  Google Scholar 

  9. Wang D, DuBois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788

    Article  PubMed  CAS  Google Scholar 

  10. Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem-cell niche via prostaglandin E2 signaling. Cancer Discov 2:840–855

    Google Scholar 

  11. Oshima H, Oguma K, Du YC, Oshima M (2009) Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci 100:1779–1785

    Article  PubMed  CAS  Google Scholar 

  12. Oshima H, Oshima M (2010) Mouse models of gastric tumors: Wnt activation and PGE2 induction. Pathol Int 60:599–607

    Article  PubMed  CAS  Google Scholar 

  13. Thun MJ, Namboodiri MM, Heath CW Jr (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325:1593–1596

    Article  PubMed  CAS  Google Scholar 

  14. Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, Speizer FE (1995) Aspirin and the risk of colorectal cancer in women. N Engl J Med 333:609–614

    Article  PubMed  CAS  Google Scholar 

  15. Giardiello FM, Hamilton SR, Krush AJ, Piantadosi S, Hylind LM, Celano P, Booker SV, Robinson CR, Offerhaus GJ (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:1313–1316

    Article  PubMed  CAS  Google Scholar 

  16. Oshima M, Taketo MM (2002) COX selectivity and animal models for colon cancer. Curr Pharm Des 8:1021–1034

    Article  PubMed  CAS  Google Scholar 

  17. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM (1996) Suppression of intestinal polyposis in Apc∆716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809

    Article  PubMed  CAS  Google Scholar 

  18. Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, Tiano HF, Morham SG, Smithies O, Langenbach R (2000) Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 60:4705–4708

    PubMed  CAS  Google Scholar 

  19. Yoshimatsu K, Altorki NK, Golijanin D, Zhang F, Jakobsson PJ, Dannenberg AJ, Subbaramaiah K (2001) Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clin Cancer Res 7:2669–2674

    PubMed  CAS  Google Scholar 

  20. van Rees BP, Sivula A, Thoren S, Yokozaki H, Jalobsson PJ, Offerhaus GJ, Ristimaki A (2003) Expression of microsomal prostaglandin E synthase-1 in intestinal gastric adenocarcinoma and in gastric cancer cell lines. Int J Cancer 107:551–556

    Article  PubMed  Google Scholar 

  21. Nakanishi M, Montrose DC, Clark P, Nambiar PR, Belinsky GS, Claffey KP, Xu D, Rosenberg DW (2008) Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 68:3251–3259

    Article  PubMed  CAS  Google Scholar 

  22. Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose DC, Vella AT, Rosenberg DW (2011) Selective PGE2 suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res 4:1198–1208

    Article  CAS  Google Scholar 

  23. Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Natumiya S, Oshima M, Taketo MM (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc∆716 knockout mice. Nat Med 7:1048–1051

    Article  PubMed  CAS  Google Scholar 

  24. Seno H, Oshima M, Ishikawa TO, Oshima H, Takaku K, Chiba T, Narumiya S, Taketo MM (2002) Cyclooxygenase 2- and prostaglandin E2 receptor EP2-dependent angiogenesis in Apc∆716 mouse intestinal polyps. Cancer Res 62:506–511

    PubMed  CAS  Google Scholar 

  25. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin–β-catenin signaling axis. Science 310:1504–1510

    Article  PubMed  CAS  Google Scholar 

  26. Balkwill F (2009) Tumor necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article  PubMed  CAS  Google Scholar 

  27. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F (1999) Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat Med 5:828–831

    Article  PubMed  CAS  Google Scholar 

  28. Arnott CH, Scott KA, Moore RJ, Robinson SC, Thompson RG, Balkwill FR (2004) Expression of both TNF-α receptor subtypes is essential for optimal skin tumor development. Oncogene 23:1902–1910

    Article  PubMed  CAS  Google Scholar 

  29. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008) Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    PubMed  CAS  Google Scholar 

  30. Oshima H, Oshima M (2012) The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 47:97–106

    Article  PubMed  CAS  Google Scholar 

  31. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  32. Heikkila K, Ebrahim S, Lawlor DA (2008) Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 44:937–945

    Article  PubMed  CAS  Google Scholar 

  33. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitala S, Matthews V, Schmid RM, Kirchner T, Arkan MC, Ernst M, Greten FR (2009) gp130-mediated STAT3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102

    Article  PubMed  CAS  Google Scholar 

  34. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M (2009) IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  PubMed  CAS  Google Scholar 

  35. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890

    Article  PubMed  CAS  Google Scholar 

  36. Taketo MM (2006) Wnt signaling and gastrointestinal tumorigenesis in mouse models. Oncogene 25:7522–7530

    Article  PubMed  CAS  Google Scholar 

  37. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92:4482–4486

    Article  PubMed  CAS  Google Scholar 

  38. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM (1999) Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J 18:5931–5942

    Article  PubMed  CAS  Google Scholar 

  39. Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, Groden J, Lowy AM (2002) β-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62:3503–3506

    PubMed  CAS  Google Scholar 

  40. Woo DK, Kim HS, Lee HS, Kang YH, Yang HK, Kim WH (2001) Altered expression and mutation of β-catenin gene in gastric carcinomas and cell lines. Int J Cancer 95:108–113

    Article  PubMed  CAS  Google Scholar 

  41. Cheng XX, Wang ZC, Chen XY, Sun Y, Kong QY, Liu J, Li H (2005) Correlation of Wnt-2 expression and β-catenin intracellular accumulation in Chinese gastric cancers: relevance with tumour dissemination. Cancer Lett 223:339–347

    Article  PubMed  CAS  Google Scholar 

  42. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M (2006) Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 131:1086–1095

    Article  PubMed  CAS  Google Scholar 

  43. Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS, Kim SY, Lee HK, Kim PJ, Oh ST, Yoo NJ, Lee JY (1999) Frequent somatic mutations of the β-catenin gene in intestinal-type gastric cancer. Cancer Res 59:4257–4260

    PubMed  CAS  Google Scholar 

  44. Ebert MP, Fei G, Kahmann S, Muller O, Yu J, Sung JJ, Malfertheiner P (2002) Increased β-catenin mRNA levels and mutational alterations of the APC and β-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis 23:87–91

    Article  PubMed  CAS  Google Scholar 

  45. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells. EMBO J 27:1671–1681

    Article  PubMed  CAS  Google Scholar 

  46. Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Härkönen M (1997) Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 57:1276–1280

    PubMed  Google Scholar 

  47. Al-Marhoon MS, Nunn S, Soames RW (2004) CagA + Helicobacter pylori induces greater levels of prostaglandin E2 than cagA − strains. Prostaglandins Other Lipid Mediat 73:181–189

    Article  PubMed  CAS  Google Scholar 

  48. Sun WH, Yu Q, Shen H, Qu XL, Cao DZ, Yu T, Qian C, Zhu F, Sun YL, Fu XL, Su H (2004) Roles of Helicobacter pylori infection and cyclooxygenase-2 expression in gastric carcinogenesis. World J Gastroenterol 10:2809–2813

    PubMed  CAS  Google Scholar 

  49. Oshima H, Oshima M, Inaba K, Taketo MM (2004) Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J 23:1669–1678

    Article  PubMed  CAS  Google Scholar 

  50. Oshima M, Ohima H, Matsunaga A, Taketo MM (2005) Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-α-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res 65:9147–9151

    Article  PubMed  CAS  Google Scholar 

  51. Yamaguchi H, Goldenring JR, Kaminishi M, Lee JR (2002) Identification of spasmolytic polypeptide-expressing metaplasia (SPEM) in remnant gastric cancer and surveillance post-gastrectomy biopsies. Dig Dis Sci 47:573–578

    Article  PubMed  Google Scholar 

  52. Halldorsdottir AM, Sigurdardottrir M, Jonasson JG, Oddsdottir M, Magnusson J, Lee JR, Goldenring JR (2003) Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig Dis Sci 48:431–441

    Article  PubMed  CAS  Google Scholar 

  53. Goldenring JR, Nomura S (2009) Insight into the development of preneoplastic metaplasia: spasmolytic polypeptide-expressing metaplasia and oxyntic atrophy. In: Wang TC, Fox JG, Giraud AS (eds) The biology of gastric cancer. Springer, New York, pp 361–375

    Chapter  Google Scholar 

  54. Nomura S, Baxter T, Yamaguchi H, Leys C, Vartapetian AB, Fox JG, Lee JR, Wang TC, Goldenring JR (2004) Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology 127:582–594

    Article  PubMed  CAS  Google Scholar 

  55. Kang W, Rathinavelu S, Samuelson LC, Merchang JL (2005) Interferon γ induction of gastric mucous neck cell hypertrophy. Lab Invest 85:702–715

    Article  PubMed  CAS  Google Scholar 

  56. Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J, Grail D, Jenkins BJ, Ernst M, Giraud AS (2004) Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126:196–207

    Article  PubMed  CAS  Google Scholar 

  57. Guo X, Oshima H, Kitamura T, Taketo MM, Oshima M (2008) Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem 283:19864–19871

    Article  PubMed  CAS  Google Scholar 

  58. Itadani H, Oshima H, Oshima M, Kotani H (2009) Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics 10:615

    Article  PubMed  Google Scholar 

  59. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba E, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of xc and thereby promotes tumor growth. Cancer Cell 19:387–400

    Article  PubMed  CAS  Google Scholar 

  60. Ishimoto T, Oshima H, Oshima M, Kai K, Torii R, Masuko T, Baba H, Saya H, Nagano O (2010) CD44(+) slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci 101:673–678

    Article  PubMed  CAS  Google Scholar 

  61. Oshima H, Hioki K, Popivanova BK, Oguma K, van Rooijen N, Ishikawa T, Oshima M (2011) Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology 140:596–607

    Article  PubMed  CAS  Google Scholar 

  62. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  PubMed  CAS  Google Scholar 

  63. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127

    Article  PubMed  CAS  Google Scholar 

  64. Chinen T, Komai K, Muto G, Morita R, Inoue N, Yoshida H, Sekiya T, Yoshida R, Nakamura K, Takayanagi R, Yoshimura A (2010) Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nature Commun 2:190

    Article  Google Scholar 

  65. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN (2005) Cyclooxigenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 2:254–266

    Article  Google Scholar 

  66. Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ, Threadgill DW (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99:1521–1526

    Article  PubMed  CAS  Google Scholar 

  67. Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, Wissner A, Nunes M, Frost P, Discafani CM (2006) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6:1024–1028

    Google Scholar 

  68. Buchanan FG, Holla V, Katkuri S, Matta P, DuBois RN (2008) Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer. Cancer Res 67:9380–9388

    Article  Google Scholar 

  69. Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278:35451–35457

    Article  PubMed  CAS  Google Scholar 

  70. Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN (2006) Role of β-arrestin1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci USA 103:1492–1497

    Article  PubMed  CAS  Google Scholar 

  71. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8:289–293

    Article  PubMed  CAS  Google Scholar 

  72. Shao J, Lee SB, Guo H, Evers BM, Sheng H (2003) Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res 63:5218–5223

    PubMed  CAS  Google Scholar 

  73. Subbaramaiah K, Benezra R, Hudis C, Dannenberg AJ (2008) Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. J Biol Chem 283:33955–33968

    Article  PubMed  CAS  Google Scholar 

  74. Al-Salihi MA, Ulmer SC, Doan T, Nelson CD, Crotty T, Prescott SM, Stafforini DM, Topham MK (2007) Cyclooxygenase-2 transactivates the epidermal growth factor receptor through specific E-prostanoid receptors and tumor necrosis factor-α converting enzyme. Cell Signal 19:1956–1963

    Article  PubMed  CAS  Google Scholar 

  75. Oshima H, Popivanova BK, Oguma K, Dong D, Ishikawa T, Oshima M (2011) Activation of epidermal growth factor receptor signaling by the prostaglandin E2 receptor EP4 pathway during gastric tumorigenesis. Cancer Sci 102:713–719

    Article  PubMed  CAS  Google Scholar 

  76. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    Article  PubMed  CAS  Google Scholar 

  77. Oshima H, Itadani H, Kotani H, Taketo MM, Oshima M (2009) Induction of prostaglandin E2 pathway promotes gastric hamartoma development with suppression of bone morphogenetic protein signaling. Cancer Res 69:2729–2733

    Article  PubMed  CAS  Google Scholar 

  78. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–137

    Article  PubMed  CAS  Google Scholar 

  79. Mann JR, Backlund MG, Buchanan FG, Daikoku T, Holla VR, Rosenberg DW, Dey SK, DuBois RN (2006) Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Res 66:6649–6656

    Article  PubMed  CAS  Google Scholar 

  80. Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, Pretlow TP, Newman RA, Willis J, Dawson D, Markowitz SD (2006) 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 103:12098–12102

    Article  PubMed  CAS  Google Scholar 

  81. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  82. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  83. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  84. Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136:586–591

    Article  PubMed  CAS  Google Scholar 

  85. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267

    Article  PubMed  Google Scholar 

  86. Sonkoly E, Pivarcsi A (2011) MicroRNAs in inflammation and response to injuries induced by environmental pollution. Mutat Res 717:46–53

    Article  PubMed  CAS  Google Scholar 

  87. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    Article  PubMed  Google Scholar 

  88. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    PubMed  CAS  Google Scholar 

  89. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39:493–506

    Article  PubMed  CAS  Google Scholar 

  90. Kong D, Piao YS, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y, Satou K, Ushijima T, Ishikawa T, Oshima M (2012) Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene 31:3949–3960

    Article  PubMed  CAS  Google Scholar 

  91. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  92. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106:3207–3212

    Article  PubMed  CAS  Google Scholar 

  93. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572

    Article  PubMed  CAS  Google Scholar 

  94. Reddy SD, Ohshiro K, Rayala SK, Kumar R (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68:8195–8200

    Article  PubMed  CAS  Google Scholar 

  95. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741

    Article  PubMed  CAS  Google Scholar 

  96. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, Wang A, Dai Y, Zhou X (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432:199–205

    Article  PubMed  CAS  Google Scholar 

  97. Saydam O, Senol O, Wurdinger T, Mizrak A, Ozdener GB, Stemmer-Rachamimov AO, Yi M, Stephens RM, Krichevsky AM, Saydam N, Brenner GJ, Breakefield XO (2011) miRNA-7 attenuation in schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res 71:852–861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Manami Watanabe for her excellent work in the series of Gan mouse studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Oshima.

Additional information

This article is a contribution to the special issue on Inflammation and Cancer - Guest Editor: Takuji Tanaka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshima, H., Oshima, M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 35, 139–150 (2013). https://doi.org/10.1007/s00281-012-0353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0353-5

Keywords

Navigation