Skip to main content

Advertisement

Log in

Modeling multiple sclerosis in laboratory animals

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olitsky PK, Yager RH (1949) Experimental disseminated encephalomyelitis in white mice. J Exp Med 90:213–224

    Article  CAS  PubMed  Google Scholar 

  2. Brown AM, McFarlin DE (1981) Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Lab Invest 45:278–284

    CAS  PubMed  Google Scholar 

  3. Fritz RB, Chou CH, McFarlin DE (1983) Induction of experimental allergic encephalomyelitis in PL/J and (SJL/J x PL/J)F1 mice by myelin basic protein and its peptides: localization of a second encephalitogenic determinant. J Immunol 130:191–194

    CAS  PubMed  Google Scholar 

  4. Trotter JL, Clark HB, Collins KG, Wegeschiede CL, Scarpellini JD (1987) Myelin proteolipid protein induces demyelinating disease in mice. J Neurol Sci 79:173–188

    Article  CAS  PubMed  Google Scholar 

  5. Linthicum DS, Frelinger JA (1982) Acute autoimmune encephalomyelitis in mice. II. Susceptibility is controlled by the combination of H-2 and histamine sensitization genes. J Exp Med 156:31–40

    Article  CAS  PubMed  Google Scholar 

  6. Kerfoot SM et al (2004) TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 173:7070–7077

    CAS  PubMed  Google Scholar 

  7. Kamradt T, Soloway PD, Perkins DL, Gefter ML (1991) Pertussis toxin prevents the induction of peripheral T cell anergy and enhances the T cell response to an encephalitogenic peptide of myelin basic protein. J Immunol 147:3296–3302

    CAS  PubMed  Google Scholar 

  8. Waldner H, Collins M, Kuchroo VK (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113:990–997

    CAS  PubMed  Google Scholar 

  9. Shive CL, Hofstetter H, Arredondo L, Shaw C, Forsthuber TG (2000) The enhanced antigen-specific production of cytokines induced by pertussis toxin is due to clonal expansion of T cells and not to altered effector functions of long-term memory cells. Eur J Immunol 30:2422–2431

    Article  CAS  PubMed  Google Scholar 

  10. Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 100:174–182

    Article  CAS  PubMed  Google Scholar 

  11. Abromson-Leeman S et al (2004) T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am J Pathol 165:1519–1533

    CAS  PubMed  Google Scholar 

  12. Teuscher C et al (2004) Gender, age, and season at immunization uniquely influence the genetic control of susceptibility to histopathological lesions and clinical signs of experimental allergic encephalomyelitis: implications for the genetics of multiple sclerosis. Am J Pathol 165:1593–1602

    PubMed  Google Scholar 

  13. Smith ME, Eller NL, McFarland HF, Racke MK, Raine CS (1999) Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis. Am J Pathol 155:1147–1161

    CAS  PubMed  Google Scholar 

  14. Fillmore PD et al (2003) Genetic analysis of the influence of neuroantigen-complete Freund’s adjuvant emulsion structures on the sexual dimorphism and susceptibility to experimental allergic encephalomyelitis. Am J Pathol 163:1623–1632

    CAS  PubMed  Google Scholar 

  15. Maatta JA, Nygardas PT, Hinkkanen AE (2000) Enhancement of experimental autoimmune encephalomyelitis severity by ultrasound emulsification of antigen/adjuvant in distinct strains of mice. Scand J Immunol 51:87–90

    Article  CAS  PubMed  Google Scholar 

  16. Oliver AR, Lyon GM, Ruddle NH (2003) Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol 171:462–468

    CAS  PubMed  Google Scholar 

  17. Sobel RA (2000) Genetic and epigenetic influence on EAE phenotypes induced with different encephalitogenic peptides. J Neuroimmunol 108:45–52

    Article  CAS  PubMed  Google Scholar 

  18. Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing–remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 10:402–418

    CAS  PubMed  Google Scholar 

  19. Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2− T lymphocytes. J Immunol 127:1420–1423

    CAS  PubMed  Google Scholar 

  20. Zamvil S et al (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317:355–358

    Article  CAS  PubMed  Google Scholar 

  21. Huseby ES et al (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    Article  CAS  PubMed  Google Scholar 

  22. Sun D et al (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    CAS  PubMed  Google Scholar 

  23. Langrish CL et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  24. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342

    Article  CAS  PubMed  Google Scholar 

  25. Flugel A et al (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14:547–560

    Article  CAS  PubMed  Google Scholar 

  26. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  CAS  PubMed  Google Scholar 

  27. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78:399–408

    Article  CAS  PubMed  Google Scholar 

  28. Olivares-Villagomez D, Wang Y, Lafaille JJ (1998) Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188:1883–1894

    Article  CAS  PubMed  Google Scholar 

  29. Madsen LS et al (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet 23:343–347

    Article  CAS  PubMed  Google Scholar 

  30. Ellmerich S et al (2005) High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol 174:1938–1946

    CAS  PubMed  Google Scholar 

  31. Quandt JA et al (2004) Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111–129-specific humanized TCR transgenic mice. J Exp Med 200:223–234

    Article  CAS  PubMed  Google Scholar 

  32. Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK (2000) Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci U S A 97:3412–3417

    Article  CAS  PubMed  Google Scholar 

  33. Bettelli E et al (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  CAS  PubMed  Google Scholar 

  34. Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    Article  CAS  PubMed  Google Scholar 

  36. Waldor MK et al (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227:415–417

    Article  CAS  PubMed  Google Scholar 

  37. Sriram S, Steinman L (1983) Anti I-A antibody suppresses active encephalomyelitis: treatment model for diseases linked to IR genes. J Exp Med 158:1362–1367

    Article  CAS  PubMed  Google Scholar 

  38. Jameson BA, McDonnell JM, Marini JC, Korngold R (1994) A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature 368:744–746

    Article  CAS  PubMed  Google Scholar 

  39. Seamons A, Perchellet A, Goverman J (2003) Immune tolerance to myelin proteins. Immunol Res 28:201–221

    Article  CAS  PubMed  Google Scholar 

  40. Tompkins SM et al (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183

    CAS  PubMed  Google Scholar 

  41. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    Article  CAS  PubMed  Google Scholar 

  42. Greter M et al (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    Article  CAS  PubMed  Google Scholar 

  43. Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543

    Article  CAS  PubMed  Google Scholar 

  44. Becher B, Prat A, Antel JP (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29:293–304

    Article  CAS  PubMed  Google Scholar 

  45. Heppner FL et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  46. Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–974

    Article  CAS  PubMed  Google Scholar 

  47. Becher B, Durell BG, Noelle RJ (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 112:1186–1191

    CAS  PubMed  Google Scholar 

  48. Prinz M et al (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456–464

    Article  CAS  PubMed  Google Scholar 

  49. De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch Neurol 60:132–136

    PubMed  Google Scholar 

  50. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  51. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  PubMed  Google Scholar 

  52. Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180

    Article  CAS  PubMed  Google Scholar 

  53. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    Article  CAS  PubMed  Google Scholar 

  54. Vanderlugt CL et al (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 164:670–678

    CAS  PubMed  Google Scholar 

  55. Waksman BH, Adams RD (1956) A comparative study of experimental allergic neuritis in the rabbit, guinea pig, and mouse. J Neuropathol Exp Neurol 15:293–334

    Article  CAS  PubMed  Google Scholar 

  56. Waksman BH (1960) The distribution of experimental auto-allergic lesions. Its relation to the distribution of small veins. Am J Pathol 37:673–693

    CAS  PubMed  Google Scholar 

  57. Lebar R, Boutry JM, Vincent C, Robineaux R, Voisin GA (1976) Studies on autoimmune encephalomyelitis in the guinea pig. II. An in vitro investigation on the nature, properties, and specificity of the serum-demyelinating factor. J Immunol 116:1439–1446

    CAS  PubMed  Google Scholar 

  58. Genain CP et al (1995) Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 96:2966–2974

    Article  CAS  PubMed  Google Scholar 

  59. Schluesener HJ, Sobel RA, Linington C, Weiner HL (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139:4016–4021

    CAS  PubMed  Google Scholar 

  60. t Hart BA et al (2004) Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol 3:588–597

    Article  Google Scholar 

  61. Genain CP et al (1994) In healthy primates, circulating autoreactive T cells mediate autoimmune disease. J Clin Invest 94:1339–1345

    Article  CAS  PubMed  Google Scholar 

  62. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912

    Article  CAS  PubMed  Google Scholar 

  63. Bruck W, Kuhlmann T, Stadelmann C (2003) Remyelination in multiple sclerosis. J Neurol Sci 206:181–185

    Article  PubMed  Google Scholar 

  64. Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  65. Kuhlmann T, Lassmann H, Bruck W (2008) Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 115:275–287

    Article  PubMed  Google Scholar 

  66. Miller SD, Karpus WJ (2007) Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc Immunol 15:15.1

    Google Scholar 

  67. Brodmerkel CM, Vaddi K (2003) Transgenic animals in inflammatory disease models. Curr Opin Biotechnol 14:652–658

    Article  CAS  PubMed  Google Scholar 

  68. Owens T, Wekerle H, Antel J (2001) Genetic models for CNS inflammation. Nat Med 7:161–166

    Article  CAS  PubMed  Google Scholar 

  69. Morel L (2004) Mouse models of human autoimmune diseases: essential tools that require the proper controls. PLoS Biol 2:E241

    Article  PubMed  CAS  Google Scholar 

  70. Leiter EH (2002) Mice with targeted gene disruptions or gene insertions for diabetes research: problems, pitfalls, and potential solutions. Diabetologia 45:296–308

    Article  CAS  PubMed  Google Scholar 

  71. Steinman L (1997) Some misconceptions about understanding autoimmunity through experiments with knockouts. J Exp Med 185:2039–2041

    Article  CAS  PubMed  Google Scholar 

  72. Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    Article  CAS  PubMed  Google Scholar 

  73. Thomas MK et al (2001) Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX-1. J Clin Invest 108:319–329

    CAS  PubMed  Google Scholar 

  74. Hirrlinger PG, Scheller A, Braun C, Hirrlinger J, Kirchhoff F (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54:11–20

    Article  PubMed  Google Scholar 

  75. Tronche F et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    Article  CAS  PubMed  Google Scholar 

  76. Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173

    Article  CAS  PubMed  Google Scholar 

  77. Buch T et al (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  CAS  PubMed  Google Scholar 

  78. Luo J et al (2007) Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J Clin Invest 117:3306–3315

    Article  CAS  PubMed  Google Scholar 

  79. Mohrs M, Shinkai K, Mohrs K, Locksley RM (2001) Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15:303–311

    Article  CAS  PubMed  Google Scholar 

  80. Bettelli E et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  81. Fontenot JD et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  CAS  PubMed  Google Scholar 

  82. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  83. Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117:1119–1127

    Article  CAS  PubMed  Google Scholar 

  84. Comabella M et al (1998) Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 102:671–678

    Article  CAS  PubMed  Google Scholar 

  85. O’Garra A, Steinman L, Gijbels K (1997) CD4+ T-cell subsets in autoimmunity. Curr Opin Immunol 9:872–883

    Article  PubMed  Google Scholar 

  86. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  87. Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110:493–497

    CAS  PubMed  Google Scholar 

  88. Gutcher I, Urich E, Wolter K, Prinz M, Becher B (2006) Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 7:946–953

    Article  CAS  PubMed  Google Scholar 

  89. Frei K et al (1997) Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis. J Exp Med 185:2177–2182

    Article  CAS  PubMed  Google Scholar 

  90. Gran B et al (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110

    CAS  PubMed  Google Scholar 

  91. Cua DJ et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  92. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  93. Hofstetter HH et al (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237:123–130

    Article  CAS  PubMed  Google Scholar 

  94. Komiyama Y et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    CAS  PubMed  Google Scholar 

  95. Haak S et al (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119:61–69

    CAS  PubMed  Google Scholar 

  96. Kreymborg K et al (2007) IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179:8098–8104

    CAS  PubMed  Google Scholar 

  97. McGeachy MJ et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    Article  CAS  PubMed  Google Scholar 

  98. Gyülvészi G, Haak S, Becher B (2009) Eur J Immunol 39(7):1864–1869

    Article  PubMed  CAS  Google Scholar 

  99. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124

    Article  CAS  PubMed  Google Scholar 

  100. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11

    Article  CAS  PubMed  Google Scholar 

  101. Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ (2008) Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS ONE 3:e3037

    Article  PubMed  CAS  Google Scholar 

  102. Parathath SR, Parathath S, Tsirka SE (2006) Nitric oxide mediates neurodegeneration and breakdown of the blood–brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 119:339–349

    Article  CAS  PubMed  Google Scholar 

  103. Yepes M et al (2003) Tissue-type plasminogen activator induces opening of the blood–brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533–1540

    CAS  PubMed  Google Scholar 

  104. Coisne C, Mao W, Engelhardt B (2009) Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood–brain barrier in vivo in an animal model of multiple sclerosis. J Immunol 182:5909–5913

    Article  CAS  PubMed  Google Scholar 

  105. Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 179:8470–8479

    PubMed  Google Scholar 

  106. Kerfoot SM, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006

    CAS  PubMed  Google Scholar 

  107. Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565

    CAS  PubMed  Google Scholar 

  108. Bullard DC et al (2007) Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 178:851–857

    CAS  PubMed  Google Scholar 

  109. Cayrol R et al (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145

    Article  CAS  PubMed  Google Scholar 

  110. Polman CH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  111. Rudick RA et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923

    Article  CAS  PubMed  Google Scholar 

  112. Wu C et al (2009) Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med 15:519–527

    Article  CAS  PubMed  Google Scholar 

  113. Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144

    Article  CAS  PubMed  Google Scholar 

  114. Toft-Hansen H et al (2006) Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 177:7242–7249

    CAS  PubMed  Google Scholar 

  115. Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930

    CAS  PubMed  Google Scholar 

  116. Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM (1995) Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav Immun 9:315–330

    Article  CAS  PubMed  Google Scholar 

  117. Agrawal S et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    Article  CAS  PubMed  Google Scholar 

  118. Hafler DA et al (2007) Risk alleles for multiple sclerosis identified by a genome wide study. N Engl J Med 357:851–862

    Article  CAS  PubMed  Google Scholar 

  119. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    Article  CAS  PubMed  Google Scholar 

  120. Hauser SL et al (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19:578–587

    Article  CAS  PubMed  Google Scholar 

  121. Booss J, Esiri MM, Tourtellotte WW, Mason DY (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci 62:219–232

    Article  CAS  PubMed  Google Scholar 

  122. Crawford MP et al (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103:4222–4231

    Article  CAS  PubMed  Google Scholar 

  123. Jiang H, Braunstein NS, Yu B, Winchester R, Chess L (2001) CD8+ T cells control the TH phenotype of MBP-reactive CD4+ T cells in EAE mice. Proc Natl Acad Sci U S A 98:6301–6306

    Article  CAS  PubMed  Google Scholar 

  124. Babbe H et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  CAS  PubMed  Google Scholar 

  125. Ji Q, Goverman J (2007) Experimental autoimmune encephalomyelitis mediated by CD8+ T cells. Ann N Y Acad Sci 1103:157–166

    Article  CAS  PubMed  Google Scholar 

  126. Ford ML, Evavold BD (2005) Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol 35:76–85

    Article  CAS  PubMed  Google Scholar 

  127. Najafian N et al (2003) Regulatory functions of CD8+CD28− T cells in an autoimmune disease model. J Clin Invest 112:1037–1048

    CAS  PubMed  Google Scholar 

  128. Jiang H et al (2003) Regulatory CD8+ T cells fine-tune the myelin basic protein-reactive T cell receptor V beta repertoire during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 100:8378–8383

    Article  CAS  PubMed  Google Scholar 

  129. Jiang H, Zhang SI, Pernis B (1992) Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256:1213–1215

    Article  CAS  PubMed  Google Scholar 

  130. Medana I, Martinic MA, Wekerle H, Neumann H (2001) Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 159:809–815

    CAS  PubMed  Google Scholar 

  131. Su SB et al (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol 175:6303–6310

    CAS  PubMed  Google Scholar 

  132. Yip HC et al (1999) Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. J Immunol 162:3942–3949

    CAS  PubMed  Google Scholar 

  133. Brisebois M, Zehntner SP, Estrada J, Owens T, Fournier S (2006) A pathogenic role for CD8+ T cells in a spontaneous model of demyelinating disease. J Immunol 177:2403–2411

    CAS  PubMed  Google Scholar 

  134. Ip CW et al (2006) Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J Neurosci 26:8206–8216

    Article  CAS  PubMed  Google Scholar 

  135. Cornet A et al (2001) Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn’s disease? Proc Natl Acad Sci U S A 98:13306–13311

    Article  CAS  PubMed  Google Scholar 

  136. Cabarrocas J, Bauer J, Piaggio E, Liblau R, Lassmann H (2003) Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol 33:1174–1182

    Article  CAS  PubMed  Google Scholar 

  137. Perchellet A, Stromnes I, Pang JM, Goverman J (2004) CD8+ T cells maintain tolerance to myelin basic protein by ‘epitope theft’. Nat Immunol 5:606–614

    Article  CAS  PubMed  Google Scholar 

  138. Baur K et al (2008) Antiviral CD8 T cells recognize Borna disease virus antigen transgenically expressed in either neurons or astrocytes. J Virol 82:3099–3108

    Article  CAS  PubMed  Google Scholar 

  139. Saxena A et al (2008) Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol 181:1617–1621

    CAS  PubMed  Google Scholar 

  140. Galea I et al (2007) An antigen-specific pathway for CD8 T cells across the blood–brain barrier. J Exp Med 204:2023–2030

    Article  CAS  PubMed  Google Scholar 

  141. Na SY et al (2008) Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain 131:2353–2365

    Article  PubMed  Google Scholar 

  142. Mars LT et al (2007) CD8 T cell responses to myelin oligodendrocyte glycoprotein-derived peptides in humanized HLA-A*0201-transgenic mice. J Immunol 179:5090–5098

    CAS  PubMed  Google Scholar 

  143. Friese MA et al (2008) Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat Med 14:1227–1235

    Article  CAS  PubMed  Google Scholar 

  144. Munz C, Lunemann JD, Getts MT, Miller SD (2009) Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 9:246–258

    Article  PubMed  CAS  Google Scholar 

  145. Evans CF, Horwitz MS, Hobbs MV, Oldstone MB (1996) Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med 184:2371–2384

    Article  CAS  PubMed  Google Scholar 

  146. Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD (2001) A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest 108:311–8

    CAS  PubMed  Google Scholar 

  147. Butz EA, Bevan MJ (1998) Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8:167–175

    Article  CAS  PubMed  Google Scholar 

  148. Murali-Krishna K et al (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  CAS  PubMed  Google Scholar 

  149. Croxford JL, Ercolini AM, Degutes M, Miller SD (2006) Structural requirements for initiation of cross-reactivity and CNS autoimmunity with a PLP139–151 mimic peptide derived from murine hepatitis virus. Eur J Immunol 36:2671–2680

    Article  CAS  PubMed  Google Scholar 

  150. Haring JS, Pewe LL, Perlman S (2002) Bystander CD8 T cell-mediated demyelination after viral infection of the central nervous system. J Immunol 169:1550–1555

    CAS  PubMed  Google Scholar 

  151. Dandekar AA, Anghelina D, Perlman S (2004) Bystander CD8 T-cell-mediated demyelination is interferon-gamma-dependent in a coronavirus model of multiple sclerosis. Am J Pathol 164:363–369

    CAS  PubMed  Google Scholar 

  152. Ercolini AM, Miller SD (2009) The role of infections in autoimmune disease. Clin Exp Immunol 155:1–15

    Article  CAS  PubMed  Google Scholar 

  153. Dal Canto MC, Lipton HL (1975) Primary demyelination in Theiler’s virus infection. An ultrastructural study. Lab Invest 33:626–637

    CAS  PubMed  Google Scholar 

  154. Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    CAS  PubMed  Google Scholar 

  155. Dal Canto MC, Lipton HL (1982) Ultrastructural immunohistochemical localization of virus in acute and chronic demyelinating Theiler’s virus infection. Am J Pathol 106:20–29

    CAS  PubMed  Google Scholar 

  156. Lipton HL, Twaddle G, Jelachich ML (1995) The predominant virus antigen burden is present in macrophages in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Virol 69:2525–2533

    CAS  PubMed  Google Scholar 

  157. Trottier M, Kallio P, Wang W, Lipton HL (2001) High numbers of viral RNA copies in the central nervous system of mice during persistent infection with Theiler’s virus. J Virol 75:7420–7428

    Article  CAS  PubMed  Google Scholar 

  158. Aubert C, Chamorro M, Brahic M (1987) Identification of Theiler’s virus infected cells in the central nervous system of the mouse during demyelinating disease. Microb Pathog 3:319–326

    Article  CAS  PubMed  Google Scholar 

  159. Rodriguez M, Leibowitz JL, Lampert PW (1983) Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Ann Neurol 13:426–433

    Article  CAS  PubMed  Google Scholar 

  160. Zheng L, Calenoff MA, Dal Canto MC (2001) Astrocytes, not microglia, are the main cells responsible for viral persistence in Theiler’s murine encephalomyelitis virus infection leading to demyelination. J Neuroimmunol 118:256–267

    Article  CAS  PubMed  Google Scholar 

  161. Rodriguez M (1985) Virus-induced demyelination in mice: “dying back” of oligodendrocytes. Mayo Clin Proc 60:433–438

    CAS  PubMed  Google Scholar 

  162. Roos RP, Wollmann R (1984) DA strain of Theiler’s murine encephalomyelitis virus induces demyelination in nude mice. Ann Neurol 15:494–499

    Article  CAS  PubMed  Google Scholar 

  163. Kang MH, So EY, Park H, Kim BS (2008) Replication of Theiler’s virus requires NF-kappa B-activation: higher viral replication and spreading in astrocytes from susceptible mice. Glia 56:942–953

    Article  PubMed  Google Scholar 

  164. Palma JP, Kim BS (2004) The scope and activation mechanisms of chemokine gene expression in primary astrocytes following infection with Theiler’s virus. J Neuroimmunol 149:121–129

    Article  CAS  PubMed  Google Scholar 

  165. Palma JP, Kwon D, Clipstone NA, Kim BS (2003) Infection with Theiler’s murine encephalomyelitis virus directly induces proinflammatory cytokines in primary astrocytes via NF-kappa B activation: potential role for the initiation of demyelinating disease. J Virol 77:6322–6331

    Article  CAS  PubMed  Google Scholar 

  166. So EY, Kang MH, Kim BS (2006) Induction of chemokine and cytokine genes in astrocytes following infection with Theiler’s murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53:858–867

    Article  PubMed  Google Scholar 

  167. So EY, Kim BS (2009) Theiler’s virus infection induces TLR3-dependent upregulation of TLR2 critical for proinflammatory cytokine production. Glia 57:1216–1226

    Article  PubMed  Google Scholar 

  168. Carpentier PA, Williams BR, Miller SD (2007) Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 55:239–252

    Article  PubMed  Google Scholar 

  169. Croxford JL, Olson JK, Miller SD (2002) Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev 1:251–260

    Article  CAS  PubMed  Google Scholar 

  170. Miller SD et al (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    Article  CAS  PubMed  Google Scholar 

  171. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95

    Article  CAS  PubMed  Google Scholar 

  172. Katz-Levy Y et al (2000) Temporal development of autoreactive Th1 responses and endogenous presentation of self myelin epitopes by central nervous system-resident APCs in Theiler’s virus-infected mice. J Immunol 165:5304–5314

    CAS  PubMed  Google Scholar 

  173. Brahic M, Bureau JF, Michiels T (2005) The genetics of the persistent infection and demyelinating disease caused by Theiler’s virus. Annu Rev Microbiol 59:279–298

    Article  CAS  PubMed  Google Scholar 

  174. Lipton HL, Melvold R (1984) Genetic analysis of susceptibility to Theiler’s virus-induced demyelinating disease in mice. J Immunol 132:1821–1825

    CAS  PubMed  Google Scholar 

  175. Borrow P, Tonks P, Welsh CJ, Nash AA (1992) The role of CD8+T cells in the acute and chronic phases of Theiler’s murine encephalomyelitis virus-induced disease in mice. J Gen Virol 73(Pt 7):1861–1865

    Article  PubMed  Google Scholar 

  176. Fiette L, Aubert C, Brahic M, Rossi CP (1993) Theiler’s virus infection of beta 2-microglobulin-deficient mice. J Virol 67:589–592

    CAS  PubMed  Google Scholar 

  177. Ure DR, Rodriguez M (2002) Preservation of neurologic function during inflammatory demyelination correlates with axon sparing in a mouse model of multiple sclerosis. Neuroscience 111:399–411

    Article  CAS  PubMed  Google Scholar 

  178. Begolka WS et al (2001) CD8-deficient SJL mice display enhanced susceptibility to Theiler’s virus infection and increased demyelinating pathology. J Neurovirol 7:409–420

    Article  CAS  PubMed  Google Scholar 

  179. Howe CL et al (2007) CD8+ T cells directed against a viral peptide contribute to loss of motor function by disrupting axonal transport in a viral model of fulminant demyelination. J Neuroimmunol 188:13–21

    Article  CAS  PubMed  Google Scholar 

  180. Howe CL, Adelson JD, Rodriguez M (2007) Absence of perforin expression confers axonal protection despite demyelination. Neurobiol Dis 25:354–359

    Article  CAS  PubMed  Google Scholar 

  181. Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25:216–228

    Article  CAS  PubMed  Google Scholar 

  182. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  CAS  PubMed  Google Scholar 

  183. Taylor LC, Gilmore W, Matsushima GK (2008) SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol 19:467–479

    Article  PubMed  CAS  Google Scholar 

  184. Suzuki K (1969) Giant hepatic mitochondria: production in mice fed with cuprizone. Science 163:81–82

    Article  CAS  PubMed  Google Scholar 

  185. Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73–83

    Article  CAS  PubMed  Google Scholar 

  186. Skripuletz T et al (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061

    Article  PubMed  Google Scholar 

  187. Hoffmann K, Lindner M, Groticke I, Stangel M, Loscher W (2008) Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Exp Neurol 210:308–321

    Article  CAS  PubMed  Google Scholar 

  188. Koutsoudaki PN et al (2009) Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett 451:83–88

    Article  CAS  PubMed  Google Scholar 

  189. Irvine KA, Blakemore WF (2006) Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 175:69–76

    Article  CAS  PubMed  Google Scholar 

  190. Mason JL, Langaman C, Morell P, Suzuki K, Matsushima GK (2001) Episodic demyelination and subsequent remyelination within the murine central nervous system: changes in axonal calibre. Neuropathol Appl Neurobiol 27:50–58

    Article  CAS  PubMed  Google Scholar 

  191. Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477

    Article  CAS  PubMed  Google Scholar 

  192. Jurevics H et al (2001) Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain. J Neurochem 77:1067–1076

    Article  CAS  PubMed  Google Scholar 

  193. Wu QZ et al (2008) MRI identification of the rostral–caudal pattern of pathology within the corpus callosum in the cuprizone mouse model. J Magn Reson Imaging 27:446–453

    Article  PubMed  Google Scholar 

  194. Mason JL et al (2000) Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61:251–262

    Article  CAS  PubMed  Google Scholar 

  195. Lindner M et al (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34:105–114

    CAS  PubMed  Google Scholar 

  196. Kondo A, Nakano T, Suzuki K (1987) Blood–brain barrier permeability to horseradish peroxidase in twitcher and cuprizone-intoxicated mice. Brain Res 425:186–190

    Article  CAS  PubMed  Google Scholar 

  197. McMahon EJ, Suzuki K, Matsushima GK (2002) Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood–brain barrier. J Neuroimmunol 130:32–45

    Article  CAS  PubMed  Google Scholar 

  198. Hiremath MM et al (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  CAS  PubMed  Google Scholar 

  199. Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724

    Article  PubMed  Google Scholar 

  200. Arnett HA et al (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122

    Article  CAS  PubMed  Google Scholar 

  201. Hiremath MM, Chen VS, Suzuki K, Ting JP, Matsushima GK (2008) MHC class II exacerbates demyelination in vivo independently of T cells. J Neuroimmunol 203:23–32

    Article  CAS  PubMed  Google Scholar 

  202. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    CAS  PubMed  Google Scholar 

  203. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212

    Article  CAS  PubMed  Google Scholar 

  204. Mana P, Linares D, Fordham S, Staykova M, Willenborg D (2006) Deleterious role of IFN gamma in a toxic model of central nervous system demyelination. Am J Pathol 168:1464–1473

    Article  CAS  PubMed  Google Scholar 

  205. Lin W et al (2006) Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 129:1306–1318

    Article  PubMed  Google Scholar 

  206. Trebst C et al (2007) Lack of interferon-beta leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol 114:587–596

    Article  CAS  PubMed  Google Scholar 

  207. Marriott MP et al (2008) Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia 56:686–698

    Article  PubMed  Google Scholar 

  208. Plant SR, Arnett HA, Ting JP (2005) Astroglial-derived lymphotoxin-alpha exacerbates inflammation and demyelination, but not remyelination. Glia 49:1–14

    Article  PubMed  Google Scholar 

  209. Plant SR et al (2007) Lymphotoxin beta receptor (Lt beta R): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt beta R-Ig protein. J Neurosci 27:7429–7437

    Article  CAS  PubMed  Google Scholar 

  210. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1 beta promotes repair of the CNS. J Neurosci 21(18):7046–7052

    CAS  PubMed  Google Scholar 

  211. Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE (2003) Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23(20):7710–7718

    CAS  PubMed  Google Scholar 

  212. Linares D, Taconis M, Mana P, Correcha M, Fordham S, Staykova M, Willenborg DO (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26(49):12672–12681

    Article  CAS  PubMed  Google Scholar 

  213. Arnett HA, Hellendall RP, Matsushima GK, Suzuki K, Laubach VE, Sherman P, Ting JP (2002) The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J Immunol 168(1):427–433

    CAS  PubMed  Google Scholar 

  214. McMahon EJ, Cook DN, Suzuki K, Matsushima GK (2001) Absence of macrophage-inflammatory protein-1alpha delays central nervous system demyelination in the presence of an intact blood-brain barrier. J Immunol 167(5):2964–2971

    CAS  PubMed  Google Scholar 

  215. Franco-Pons N, Torrente M, Colomina MT, Vilella E (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169:205–213

    Article  CAS  PubMed  Google Scholar 

  216. Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202:217–224

    Article  CAS  PubMed  Google Scholar 

  217. Andersson PB, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48:169–186

    Article  CAS  PubMed  Google Scholar 

  218. Bell MD, Perry VH (1995) Adhesion molecule expression on murine cerebral endothelium following the injection of a proinflammagen or during acute neuronal degeneration. J Neurocytol 24:695–710

    Article  CAS  PubMed  Google Scholar 

  219. Felts PA et al (2005) Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128:1649–1666

    Article  PubMed  Google Scholar 

  220. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    Article  PubMed  Google Scholar 

  221. Ji KA et al (2007) Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 55:1577–1588

    Article  PubMed  Google Scholar 

  222. Andersson PB, Perry VH, Gordon S (1992) Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system. J Exp Med 176:255–259

    Article  CAS  PubMed  Google Scholar 

  223. Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P (2006) A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol 177:8103–8110

    CAS  PubMed  Google Scholar 

  224. Lehnardt S et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486

    CAS  PubMed  Google Scholar 

  225. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941

    Article  CAS  PubMed  Google Scholar 

  226. Pang Y, Cai Z, Rhodes PG (2000) Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia. J Neurosci Res 62:510–520

    Article  CAS  PubMed  Google Scholar 

  227. Li J et al (2008) Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 28:5321–5330

    Article  CAS  PubMed  Google Scholar 

  228. Brockschnieder D, Pechmann Y, Sonnenberg-Riethmacher E, Riethmacher D (2006) An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis 44:322–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Becher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiner, B., Heppner, F.L. & Becher, B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 31, 479–495 (2009). https://doi.org/10.1007/s00281-009-0181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0181-4

Keywords

Navigation