Skip to main content

Advertisement

Log in

The pathological spectrum of CNS inflammatory demyelinating diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory demyelinating diseases of the central nervous system (CNS) occur throughout the world and are the leading cause of nontraumatic neurological disability in young adults. They represent a broad spectrum of disorders that vary in their clinical course, regional distribution, and pathology. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. Multiple sclerosis (MS), the most common inflammatory demyelinating CNS disease affecting approximately one million adults, shares the basic pathological hallmark of CNS inflammatory demyelination. Advances based on recent systematic clinicopathologic-serologic correlative approaches have led to novel insights with respect to the classification of this disorder, the pathologic substrate of disability, a better understanding of the underlying pathogenic mechanisms involved in lesion formation, as well as the clinical relevance of cortical demyelination and normal appearing white matter pathology. In addition to prototypic MS, these diseases include Marburg variant of acute MS, Balo’s concentric sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis, and tumefactive MS. The last decade has seen a resurgence of interest in examining the lesions of these inflammatory demyelinating CNS disorders with newer and more sophisticated immunological and molecular tools. Herein, we review the clinicopathologic features of these CNS inflammatory demyelinating disorders and discuss recent advances in understanding their immunopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carswell R (1838) Pathological anatomy: illustrations on elementary forms of disease. Logman, London

    Google Scholar 

  2. Charcot J (1880) Lecons sur les maladies du systeme nerveux faites a la salpetriere. Cert et fils, Paris

    Google Scholar 

  3. Charcot JM (1848) Histologie de la sclérose en plaques. Gaz Hop Civ Mil 41:554–566

    Google Scholar 

  4. Cruveilier J (1880) Anatomie pathologique du corps humain. JB Paris, Bailliere pp 1829–1842

    Google Scholar 

  5. Traugott U (1983) Multiple sclerosis: relevance of class I and class II MHC- expressing cells to lesion development. J Neuroimmunol 16:283–302

    Google Scholar 

  6. Anderson DW, Ellenberg JH, Leventhal CM et al (1992) Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31:333–336

    CAS  PubMed  Google Scholar 

  7. Mayr WT, Pittock SJ, McClelland RL et al (1373) Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61:1373–1377

    Google Scholar 

  8. Bruck W, Porada P, Poser S et al (1995) Monocyte-macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796

    CAS  PubMed  Google Scholar 

  9. Prineas JW, Kwon EE, Cho ES et al (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657

    CAS  PubMed  Google Scholar 

  10. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    CAS  PubMed  Google Scholar 

  11. Aboul-Enein F, Rauschka H, Kornek B et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

    CAS  PubMed  Google Scholar 

  12. Lucchinetti CF, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    CAS  PubMed  Google Scholar 

  13. Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308

    PubMed  Google Scholar 

  14. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    PubMed  Google Scholar 

  15. Barnett MH, Prineas JW (2004) Pathological heterogeneity in multiple sclerosis: a reflection of lesion stage? Ann Neurol 56:309

    Google Scholar 

  16. Barnett MH, Parratt JD, Cho ES, Prineas JW (2009) Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann Neurol 65:32–46

    PubMed  Google Scholar 

  17. Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    CAS  PubMed  Google Scholar 

  18. Mahad DJ, Trebst C, Kivisakk P et al (2004) Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 63:262–273

    CAS  PubMed  Google Scholar 

  19. Quintana FJ, Farez MF, Viglietta V et al (2008) Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A 105:18889–18894

    CAS  PubMed  Google Scholar 

  20. Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    PubMed  Google Scholar 

  21. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    PubMed  Google Scholar 

  22. Keegan M, Konig F, McClelland R et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    PubMed  Google Scholar 

  23. Haupts MR, Schimrigk SK, Brune N et al (2008) Fulminant tumefactive multiple sclerosis: therapeutic implications of histopathology. J Neurol 255:1272–1273

    PubMed  Google Scholar 

  24. Allen IV, Glover G, Anderson R (1981) Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis. Acta Neuropathol Suppl (Berl) VII:176–181

    Google Scholar 

  25. Allen IV, McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141–144

    CAS  PubMed  Google Scholar 

  26. Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121(Pt 1):103–113

    PubMed  Google Scholar 

  27. Kutzelnigg A, Lucchinetti C, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    PubMed  Google Scholar 

  28. Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573

    CAS  PubMed  Google Scholar 

  29. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303

    PubMed  Google Scholar 

  30. Montes M, Zhang X, Berthelot L et al (2009) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol 130:133–144

    CAS  PubMed  Google Scholar 

  31. Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ (2008) A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131:3092–3102

    PubMed  Google Scholar 

  32. Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642

    PubMed  Google Scholar 

  33. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    CAS  PubMed  Google Scholar 

  34. Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    PubMed  Google Scholar 

  35. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    CAS  PubMed  Google Scholar 

  36. Calabrese M, Filippi M, Rovaris M et al (2009) Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult Scler 15:36–41

    CAS  PubMed  Google Scholar 

  37. Calabrese M, De Stefano N, Atzori M et al (2008) Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J Neurol 255:581–586

    PubMed  Google Scholar 

  38. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26

    PubMed  Google Scholar 

  39. Bo L, Vedeler C, Nyland H, Trapp B, Mork S (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    PubMed  Google Scholar 

  40. Bo L, Vedeler C, Nyland H, Trapp B, Mork S (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331

    CAS  PubMed  Google Scholar 

  41. Kutzelnigg A, Faber-Rod J, Bauer J, Lucchinetti CF et al (2007) Windespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17:38–44

    PubMed  Google Scholar 

  42. Moll NM, Rietsch AM, Ransohoff AJ et al (2008) Cortical demyelination in PML and MS: Similarities and differences. Neurology 70:336–343

    CAS  PubMed  Google Scholar 

  43. Serafini B et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  44. Magliozzi R, Howell O, Vora A, Serafini B et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    PubMed  Google Scholar 

  45. Serafini B, Rosicarelli B, Franciotta D et al (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204(12):2899–2912

    CAS  PubMed  Google Scholar 

  46. van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L (2007) The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66:321–328

    PubMed  Google Scholar 

  47. Albert M, ANtel J, Bruck W, Stadelmann C (2007) Extensive cortical remeylination in patients with chronic multiple sclerosis. Brain Pathol 17:129–138

    PubMed  Google Scholar 

  48. Vercellino M, Merola A, Piacentino C et al (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739

    CAS  PubMed  Google Scholar 

  49. Dal Bianco A, Bradl M, Frischer J et al (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63:174–183

    PubMed  Google Scholar 

  50. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851

    PubMed  Google Scholar 

  51. Oppenheimer DR (1976) Demyelinating diseases. In: Blackwood W, Corsellis JAN (eds) Greenfield’s neuropathology. Edward Arnold Ltd, London, pp 470–499

    Google Scholar 

  52. Gilmore CP, Donaldson I, Bo L et al (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187

    CAS  PubMed  Google Scholar 

  53. Gilmore CP, Deluca GC, Bo L et al (2008) Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol 19(4):642–649

    PubMed  Google Scholar 

  54. Tallantyre EC, Bo L, Al-Rawashdeh O et al (2009) Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 132:1190–1199

    CAS  PubMed  Google Scholar 

  55. Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    PubMed  Google Scholar 

  56. Marburg O (1906) Die sogenannte “akute multiple sklerose”. J Psychiatr Neurol 27:211–312

    Google Scholar 

  57. Capello E, Roccataglioata L, Pagano F, Mancardi G (2001) Tumor-like multiple sclerosis (MS) lesions: neuropathological clues. J Neurosci 22:S113–S116

    Google Scholar 

  58. Balo J (1928) Encephalitis periaxalis concentrica. Arch Neurol 19:242–263

    Google Scholar 

  59. Courville C (1970) Concentric sclerosis. In: Bruyn PVaG (ed) Handbood of clinical neurology. Elsevier, Amsterdam

    Google Scholar 

  60. Lucchinetti CF, Gavrilova RH, Metz I et al (2008) Clinical and radiographic spectrum of pathologically-confirmed tumefactive multiple sclerosis. Brain 131(Pt 7):1759–1775

    CAS  PubMed  Google Scholar 

  61. Yao DL, Webster H, Hudson LD et al (1994) Concentric sclerosis (Balo): morphometric and in situ hybridization study of lesions in six patients. Ann Neurol 35:18–30

    CAS  PubMed  Google Scholar 

  62. Stadelmann C, Ludwin SK, Tabira T et al (2005) Hypoxic preconditioning explains concentric lesions in Balo’s type of multiple sclerosis. Brain 128:979–987

    PubMed  Google Scholar 

  63. Devic C (1894) Myelite subaigue compliquee de nevrite optique. Bull Med 35:18–30

    Google Scholar 

  64. Wingerchuk DM, Lennon V, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815

    CAS  PubMed  Google Scholar 

  65. Lucchinetti CF, Mandler RN, McGavern D et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    PubMed  Google Scholar 

  66. Mandler RN, Davis LE, Jeffery DR, Kornfeld M (1993) Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol 34:162–168

    CAS  PubMed  Google Scholar 

  67. Lennon VA, Wingerchuk DM, Kryzer TJ et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112

    CAS  PubMed  Google Scholar 

  68. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal MS binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    CAS  PubMed  Google Scholar 

  69. Amiry-Moghaddam M, Otsuka T, Hurn PD et al (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111

    CAS  PubMed  Google Scholar 

  70. Nicchia GP, Nico B, Camassa LMA et al (2004) The role of aquaporin-4 in blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129:935–945

    CAS  PubMed  Google Scholar 

  71. Roemer SF, Parisi JE, Lennon VA et al (2007) Pattern specific loss of aquaporin 4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205

    PubMed  Google Scholar 

  72. Sinclair C, Kirk J, Herron B, Fitzgerald U, McQuaid S (2007) Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol (Berl) 113(2):187–194

    CAS  Google Scholar 

  73. Misu T, Fujihara K, Nakamura M et al (2006) Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report. Tohoku J Exp Med 209:269–275

    PubMed  Google Scholar 

  74. Hinson SR, Pittock SJ, Lucchinetti CF et al (2007) Pathologic potential of IgG binding to water channel exrtacellular domain in neuromyelitis optica. Neurology 69:1–11

    Google Scholar 

  75. Hinson SR, Roemer SF, Lucchinetti CF et al (2008) Aquaporin-4 binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205(11):2473–2481

    CAS  PubMed  Google Scholar 

  76. Wingerchuk DM (2006) The clinical course of acute disseminated encephalomyelitis. Neurol Res 28:341–347

    PubMed  Google Scholar 

  77. Hart M, Earle K (1975) Haemorrhagic and perivenous encephalitis: a clinical-pathological review of 38 cases. J Neurol Neurosurg Psychiatry 38:585–591

    CAS  PubMed  Google Scholar 

  78. Van Bogaert L (1950) Post-infectious encephalomyelitis and multiple sclerosis; the significance of perivenous encephalomyelitis. J Neuropathol Exp Neurol 9:219–249

    Google Scholar 

  79. Malhotra HS, Jain KK, Agarwal A et al (2009) Characterization of tumefactive demyelinating lesions using MR imaging and in-vivo proton MR spectroscopy. Mult Scler 15:193–203

    CAS  PubMed  Google Scholar 

  80. Masdeu JC, Quinto C, Olivera C et al (2000) Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology 54:1427–1433

    CAS  PubMed  Google Scholar 

  81. Masdeu JC, Moreira J, Trasi S et al (1996) The open ring. A new imaging sign in demyelinating disease. J Neuroimaging 6:104–107

    CAS  PubMed  Google Scholar 

  82. Kepes J (1993) Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis: a study of 31 patients. Ann Neurol 33:18–27

    CAS  PubMed  Google Scholar 

  83. Brinar VV (2004) Non-MS recurrent demyelinating diseases. Clin Neurol Neurosurg 106:197–210

    PubMed  Google Scholar 

  84. Poser S, Luer W, Bruhn H et al (1992) Acute demyelinating disease. Classification and non-invasive diagnosis. Acta Neurol Scand 86:579–585

    CAS  PubMed  Google Scholar 

  85. Chen C, Ro L, Wang L, Wong Y (1996) Balo’s concentric sclerosis: MRI. Neuroradiology 38:322–324

    CAS  PubMed  Google Scholar 

  86. Pittock SJ, Weinshenker BG, Lucchinetti CF et al (2006) Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 63:964–968

    PubMed  Google Scholar 

  87. Magana SM, Matiello M, Pittock SJ et al (2009) Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology 72:712–717

    CAS  PubMed  Google Scholar 

  88. Morales Y, Parisi J, Lucchinetti CF (2006) The pathology of multiple sclerosis: evidence for heterogeneity. Adv Neurol 98:27–45

    Google Scholar 

  89. Weinshenker BG (1995) The natural history of multiple sclerosis. Neurol Clin 13:119–146

    CAS  PubMed  Google Scholar 

  90. Lucchinetti CF, Brück W, Lassmann H (2003) Pathology and pathogenesis of multiple sclerosis, 2nd edn. Elsevier Science, USA

    Google Scholar 

  91. Lucchinetti CF, Brück W, Noseworthy J (2001) Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 14:259–269

    CAS  PubMed  Google Scholar 

  92. Storch MK, Piddlesden S, Haltia M et al (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465–471

    CAS  PubMed  Google Scholar 

  93. Karaarslan E, Altintas A, Senol U et al (2001) Balo’s concentric sclerosis: clinical and radiologic features of five cases. Am J Neuroradiol 22:1362–1367

    CAS  PubMed  Google Scholar 

  94. Gallucci M, Caulo M, Cerone G, Masciocchi C (2001) Acquired inflammatory white matter disease. Childs Nerv Syst 17:202–210

    CAS  PubMed  Google Scholar 

  95. Wingerchuk DM (2003) Postinfectious encephalomyelitis. Curr Neurol Neurosci Rep 3:256–264

    PubMed  Google Scholar 

  96. de Seze J, Stojkovic T, Ferriby D et al (2002) Devic’s neuromyelitis optica: clinical, laboratory, MRI and outcome profile. J Neurol Sci 197:57–61

    PubMed  Google Scholar 

  97. Fardet L, Genereau T, Mikaeloff Y et al (2003) Devic’s neuromyelitis optica: study of nine cases. Acta Neurol Scand 108:193–200

    CAS  PubMed  Google Scholar 

  98. Lucchinetti CF, Mandler R, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    PubMed  Google Scholar 

  99. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53:1107–1114

    CAS  PubMed  Google Scholar 

  100. Lucchinetti C (2006) The pathology of multiple sclerosis. What may it tell us? In: Cook SD (ed) Handbook of multiple sclerosis. Taylor and Francis, New York

    Google Scholar 

  101. Lucchinetti C (2008) Pathological heterogeneity of idiopathic central nervous system. In: Rodriguez M (ed) Advances in multiple sclerosis. Springer-Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia F. Lucchinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Lucchinetti, C.F. The pathological spectrum of CNS inflammatory demyelinating diseases. Semin Immunopathol 31, 439–453 (2009). https://doi.org/10.1007/s00281-009-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0178-z

Keywords

Navigation