Skip to main content

Advertisement

Log in

Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody.

Methods

Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120–360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin.

Results

Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin.

Conclusions

The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression.

Trial registration

NCT01749384 (First posted 12/13/2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Corso S, Giordano S (2013) Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 3:978–992. https://doi.org/10.1158/2159-8290.CD-13-0040

    Article  CAS  PubMed  Google Scholar 

  2. Bylicki O, Paleiron N, Assié J-B, Chouaïd C (2020) Targeting the MET-signaling pathway in non-small-cell lung cancer: evidence to date. Onco Targets Ther 13:5691–5706. https://doi.org/10.2147/OTT.S219959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moosavi F, Giovannetti E, Saso L, Firuzi O (2019) HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 56:533–566. https://doi.org/10.1080/10408363.2019.1653821

    Article  CAS  PubMed  Google Scholar 

  4. Parikh PK, Ghate MD (2018) Recent advances in the discovery of small molecule c-Met kinase inhibitors. Eur J Med Chem 143:1103–1138. https://doi.org/10.1016/j.ejmech.2017.08.044

    Article  CAS  PubMed  Google Scholar 

  5. Wu P, Clausen MH, Nielsen TE (2015) Allosteric small-molecule kinase inhibitors. Pharmacol Ther 156:59–68. https://doi.org/10.1016/j.pharmthera.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Adjei AA, Schwartz B, Garmey E (2011) Early clinical development of ARQ 197, a selective, non-ATP-competitive inhibitor targeting MET tyrosine kinase for the treatment of advanced cancers. Oncologist 16:788–799. https://doi.org/10.1634/theoncologist.2010-0380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shojaei F, Lee JH, Simmons BH et al (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70:10090–10100. https://doi.org/10.1158/0008-5472.CAN-10-0489

    Article  CAS  PubMed  Google Scholar 

  8. You W-K, Sennino B, Williamson CW et al (2011) VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res 71:4758–4768. https://doi.org/10.1158/0008-5472.CAN-10-2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rathi N, Maughan BL, Agarwal N, Swami U (2020) Mini-review: cabozantinib in the treatment of advanced renal cell carcinoma and hepatocellular carcinoma. Cancer Manag Res 12:3741–3749. https://doi.org/10.2147/CMAR.S202973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Jundi M, Thakur S, Gubbi S, Klubo-Gwiezdzinska J (2020) Novel targeted therapies for metastatic thyroid cancer—a comprehensive review. Cancers (Basel). https://doi.org/10.3390/cancers12082104

    Article  Google Scholar 

  11. Puzanov I, Sosman J, Santoro A et al (2015) Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors. Invest New Drugs 33:159–168. https://doi.org/10.1007/s10637-014-0167-5

    Article  CAS  PubMed  Google Scholar 

  12. Katayama R, Aoyama A, Yamori T et al (2013) Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 73:3087–3096. https://doi.org/10.1158/0008-5472.CAN-12-3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basilico C, Pennacchietti S, Vigna E et al (2013) Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res 19:2381–2392. https://doi.org/10.1158/1078-0432.CCR-12-3459

    Article  CAS  PubMed  Google Scholar 

  14. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  Google Scholar 

  15. Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937. https://doi.org/10.2307/2531693

    Article  CAS  PubMed  Google Scholar 

  16. Rosen LS, Senzer N, Mekhail T et al (2011) A phase I dose-escalation study of tivantinib (ARQ 197) in adult patients with metastatic solid tumors. Clin Cancer Res 17:7754–7764. https://doi.org/10.1158/1078-0432.CCR-11-1002

    Article  CAS  PubMed  Google Scholar 

  17. Nishiya Y, Nakai D, Urasaki Y et al (2016) Stereoselective hydroxylation by CYP2C19 and oxidation by ADH4 in the in vitro metabolism of tivantinib. Xenobiotica 46:967–976. https://doi.org/10.3109/00498254.2016.1144896

    Article  CAS  PubMed  Google Scholar 

  18. Wu S, Guo Z, Hopkins CD et al (2015) Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in abcb1-overexpressing human colon cancer cells. Oncotarget 6:40866–40879. https://doi.org/10.18632/oncotarget.5885

    Article  PubMed  PubMed Central  Google Scholar 

  19. MSD MULTI-SPOT assay system: angiogenesis panel 1 (human) kit, 18113-v2-2014May

  20. Zajkowska M, Lubowicka E, Malinowski P et al (2018) Plasma levels of VEGF-A, VEGF B, and VEGFR-1 and applicability of these parameters as tumor markers in diagnosis of breast cancer. Acta Biochim Pol 65:621–628. https://doi.org/10.18388/abp.2018_2713

    Article  CAS  PubMed  Google Scholar 

  21. Krishnan VV, Ravindran R, Wun T et al (2014) Multiplexed measurements of immunomodulator levels in peripheral blood of healthy subjects: effects of analytical variables based on anticoagulants, age, and gender. Cytometry B Clin Cytom 86:426–435. https://doi.org/10.1002/cyto.b.21147

    Article  CAS  PubMed  Google Scholar 

  22. Gomes DA, Rodrigues MA, Leite MF et al (2008) c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 283:4344–4351. https://doi.org/10.1074/jbc.M706550200

    Article  CAS  PubMed  Google Scholar 

  23. Levallet G, Vaisse-Lesteven M, Le Stang N et al (2012) Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol 7:599–606. https://doi.org/10.1097/JTO.0b013e3182417da5

    Article  PubMed  Google Scholar 

  24. Brookes K, Cummings J, Backen A et al (2010) Issues on fit-for-purpose validation of a panel of ELISAs for application as biomarkers in clinical trials of anti-angiogenic drugs. Br J Cancer 102:1524–1532. https://doi.org/10.1038/sj.bjc.6605661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rimassa L, Assenat E, Peck-Radosavljevic M et al (2018) Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 19:682–693. https://doi.org/10.1016/S1470-2045(18)30146-3

    Article  CAS  PubMed  Google Scholar 

  26. Kudo M, Morimoto M, Moriguchi M et al (2020) A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci. https://doi.org/10.1111/cas.14582

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yoshioka H, Azuma K, Yamamoto N et al (2015) A randomized, double-blind, placebo-controlled, phase III trial of erlotinib with or without a c-Met inhibitor tivantinib (ARQ 197) in Asian patients with previously treated stage IIIB/IV nonsquamous nonsmall-cell lung cancer harboring wild-type epidermal growth factor receptor (ATTENTION study). Ann Oncol 26:2066–2072. https://doi.org/10.1093/annonc/mdv288

    Article  CAS  PubMed  Google Scholar 

  28. Scagliotti G, von Pawel J, Novello S et al (2015) Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol 33:2667–2674. https://doi.org/10.1200/JCO.2014.60.7317

    Article  CAS  PubMed  Google Scholar 

  29. Kyriakopoulos CE, Braden AM, Kolesar JM et al (2017) A phase I study of tivantinib in combination with temsirolimus in patients with advanced solid tumors. Invest New Drugs 35:290–297. https://doi.org/10.1007/s10637-016-0418-8

    Article  CAS  PubMed  Google Scholar 

  30. Goldman JW, Laux I, Chai F et al (2012) Phase 1 dose-escalation trial evaluating the combination of the selective MET (mesenchymal-epithelial transition factor) inhibitor tivantinib (ARQ 197) plus erlotinib. Cancer 118:5903–5911. https://doi.org/10.1002/cncr.27575

    Article  CAS  PubMed  Google Scholar 

  31. Liu SV, Groshen SG, Kelly K et al (2018) A phase I trial of topotecan plus tivantinib in patients with advanced solid tumors. Cancer Chemother Pharmacol 82:723–732. https://doi.org/10.1007/s00280-018-3672-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savage R, Zhong C, Hall T et al (2008) In vitro ADME properties of ARQ-197. Cancer Res 68:1291–1291

    Google Scholar 

  33. Murai T, Takakusa H, Nakai D et al (2014) Metabolism and disposition of [(14)C]tivantinib after oral administration to humans, dogs and rats. Xenobiotica 44:996–1008. https://doi.org/10.3109/00498254.2014.926572

    Article  CAS  PubMed  Google Scholar 

  34. Dempke WCM, Heinemann V (2009) Resistance to EGF-R (erbB-1) and VEGF-R modulating agents. Eur J Cancer 45:1117–1128. https://doi.org/10.1016/j.ejca.2008.11.038

    Article  CAS  PubMed  Google Scholar 

  35. Kopetz S, Hoff PM, Morris JS et al (2009) Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 28:453–459. https://doi.org/10.1200/JCO.2009.24.8252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagley RG, Ren Y, Weber W et al (2011) Placental growth factor upregulation is a host response to antiangiogenic therapy. Clin Cancer Res 17:976–988. https://doi.org/10.1158/1078-0432.CCR-10-2687

    Article  CAS  PubMed  Google Scholar 

  37. Kang Y-K, Muro K, Ryu M-H et al (2014) A phase II trial of a selective c-Met inhibitor tivantinib (ARQ 197) monotherapy as a second- or third-line therapy in the patients with metastatic gastric cancer. Invest New Drugs 32:355–361. https://doi.org/10.1007/s10637-013-0057-2

    Article  CAS  PubMed  Google Scholar 

  38. Meissner M, Pinter A, Michailidou D et al (2008) Microtubule-targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-transcriptional mechanisms. J Invest Dermatol 128:2084–2091. https://doi.org/10.1038/jid.2008.37

    Article  CAS  PubMed  Google Scholar 

  39. Alidzanovic L, Starlinger P, Schauer D et al (2016) The VEGF rise in blood of bevacizumab patients is not based on tumor escape but a host-blockade of VEGF clearance. Oncotarget 7:57197–57212. https://doi.org/10.18632/oncotarget.11084

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang X, Li E, Shen H et al (2020) Targeting the HGF/MET axis in cancer therapy: challenges in resistance and opportunities for improvement. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00152

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Grants UM1-CA186690, U24CA247643 (NCI-CTEP), and R50CA211241 (NCI). This project used the UPMC Hillman Cancer Center Pharmacokinetics and Pharmacodynamics Facility (CPPF) and was supported in part by award P30-CA47904. This project used the UPMC Hillman Cancer Center and Tissue and Research Pathology/Pitt Biospecimen Core shared resource which is supported in part by award P30-CA047904. WFM was supported by the Hillman Cancer Center Cancer Training in Cancer Therapeutics Research Grant (T32 CA193205).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Leonard J. Appleman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study was approved by the Institutional Review Board at the University of Pittsburgh and was conducted in accordance with the Declaration of Helsinki for human subject protection. All patients provided written informed consent prior to enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maguire, W.F., Schmitz, J.C., Scemama, J. et al. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 88, 643–654 (2021). https://doi.org/10.1007/s00280-021-04317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04317-y

Keywords

Navigation