Skip to main content
Log in

Influence of genetic variants in asparaginase pathway on the susceptibility to asparaginase-related toxicity and patients' outcome in childhood acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Asparaginase (ASNase) is a key component in the treatment protocols of childhood acute lymphoblastic leukemia (ALL). Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) mediate the anti-leukemic effect of ASNase. Only a few reports studied the association between polymorphisms in these genes and treatment-related toxicity and response. Therefore, the current study aimed to investigate the association of ASNS and ATF5 polymorphisms with the susceptibility to ASNase-related toxicity and disease outcome in a population of childhood ALL Egyptian patients.

Methods

In this study, 88 children with ALL were enrolled and genotyped for ASNS T629A and ATF5 C362T polymorphisms using allelic discrimination assay.

Results

The studied polymorphisms did not associate with hypersensitivity or thrombosis, while the ATF5 C362T polymorphism was associated significantly with decreased ASNase-associated pancreatitis (AAP) risk under the dominant model. Patients carrying TT/CT genotypes of ATF5 C362T polymorphism had a significantly better overall survival (OS) and longer event-free survival (EFS) compared to patients with CC genotype. Multivariate analysis confirmed the independent prognostic value of the ATF5 C362T dominant model.

Conclusion

ATF5 362TT and CT genotypes were associated with decreased risk to develop AAP and better disease outcome demonstrating a low risk for events and superior survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Grigoropoulos NF, Petter R, Van't Veer MB, Scott MA, Follows GA (2013) Leukemia update. Part 1: diagnosis and management. BMJ 346:f1660. https://doi.org/10.1136/bmj.f1660

  2. Vagace JM, de la Maya MD, Caceres-Marzal C, Gonzalez de Murillo S, Gervasini G (2012) Central nervous system chemotoxicity during treatment of pediatric acute lymphoblastic leukemia/lymphoma. Crit Rev Oncol Hematol 84:274–286. https://doi.org/10.1016/j.critrevonc.2012.04.003

    Article  PubMed  Google Scholar 

  3. Narta UK, Kanwar SS, Azmi W (2007) Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol 61:208–221. https://doi.org/10.1016/j.critrevonc.2006.07.009

    Article  PubMed  Google Scholar 

  4. Kawedia JD, Rytting ME (2014) Asparaginase in acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 14:S14–S17. https://doi.org/10.1016/j.clml.2014.06.017

    Article  PubMed  Google Scholar 

  5. Muller HJ, Boos J (1998) Use of l-asparaginase in childhood ALL. Crit Rev Oncol Hematol 28:97–113. https://doi.org/10.1016/s1040-8428(98)00015-8

    Article  CAS  PubMed  Google Scholar 

  6. Estes DA, Lovato DM, Khawaja HM, Winter SS, Larson RS (2007) Genetic alterations determine chemotherapy resistance in childhood T-ALL: modelling in stage-specific cell lines and correlation with diagnostic patient samples. Br J Haematol 139:20–30. https://doi.org/10.1111/j.1365-2141.2007.06763.x

    Article  CAS  PubMed  Google Scholar 

  7. Fine BM, Kaspers GJ, Ho M, Loonen AH, Boxer LM (2005) A genome-wide view of the in vitro response to l-asparaginase in acute lymphoblastic leukemia. Cancer Res 65:291–299

    CAS  PubMed  Google Scholar 

  8. Al Sarraj J, Vinson C, Thiel G (2005) Regulation of asparagine synthetase gene transcription by the basic region leucine zipper transcription factors ATF5 and CHOP. Biol Chem 386:873–879. https://doi.org/10.1515/BC.2005.102

    Article  CAS  PubMed  Google Scholar 

  9. Watatani Y, Kimura N, Shimizu YI, Akiyama I, Tonaki D, Hirose H et al (2007) Amino acid limitation induces expression of ATF5 mRNA at the post-transcriptional level. Life Sci 80:879–885. https://doi.org/10.1016/j.lfs.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  10. Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H, Kimura N et al (2008) Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J Biol Chem 283:2543–2553. https://doi.org/10.1074/jbc.M707781200

    Article  CAS  PubMed  Google Scholar 

  11. Pui CH, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 120:1165–1174. https://doi.org/10.1182/blood-2012-05-378943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, Gutierrez-Camino A, Garcia-Orad A (2017) Review of pharmacogenetics studies of l-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther 32:1–9

    Article  CAS  Google Scholar 

  13. Gervasini G, Vagace JM (2012) Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet 3:249

    Article  CAS  Google Scholar 

  14. Wolthers BO, Frandsen TL, Abrahamsson J, Albertsen BK, Helt LR et al (2017) Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia 31:325–332

    Article  CAS  Google Scholar 

  15. Kearney SL, Dahlberg SE, Levy DE, Voss SD, Sallan SE, Silverman LB (2009) Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer 53:162–167. https://doi.org/10.1002/pbc.22076

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zia AN, Chitlur M (2013) Management of thrombotic complications in acute lymphoblastic leukemia. Indian J Pediatr 80:853–862. https://doi.org/10.1007/s12098-013-1158-9

    Article  PubMed  Google Scholar 

  17. Akagi T, Yin D, Kawamata N, Bartram CR, Hofmann WK, Song JH et al (2009) Functional analysis of a novel DNA polymorphism of a tandem repeated sequence in the asparagines synthetase gene in acute lymphoblastic leukemia cells. Leuk Res 33:991–996

    Article  CAS  Google Scholar 

  18. Rousseau J, Gagne V, Labuda M, Beaubois C, Sinnett D, Laverdiere C et al (2011) ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia. Blood 118:5883–5890. https://doi.org/10.1182/blood-2011-05-355560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben Tanfous M, Sharif-Askari B, Ceppi F, Laaribi H, Gagné V, Rousseau J et al (2015) Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res 21:329–334. https://doi.org/10.1158/1078-0432.CCR-14-0508

    Article  CAS  PubMed  Google Scholar 

  20. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A (2004) ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res 32:D120–D121. https://doi.org/10.1093/nar/gkh082

  21. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306-310. https://doi.org/10.1093/nar/gki375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma N, Kumar K, Kaur G, Anand S (2007) l-Asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol 27:45–62

    Article  CAS  Google Scholar 

  23. Silverman LB, Gelber RD, Dalton VK et al (2001) Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97:1211–1218

    Article  CAS  Google Scholar 

  24. Moghrabi A, Levy DE, Asselin B et al (2007) Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95–01 for children with acute lymphoblastic leukemia. Blood 109:896–904

    Article  CAS  Google Scholar 

  25. Lomelino CL, Andring JT, McKenna R, Kilberg MS (2017) Asparagine synthetase: function, structure, and role in disease. J Biol Chem 292:19952–19958. https://doi.org/10.1074/jbc.R117.819060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greene LA, Lee HY, Angelastro JM (2009) The transcription factor ATF5: role in neurodevelopment and neural tumors. J Neurochem 108:11–22. https://doi.org/10.1111/j.1471-4159.2008.05749.x

    Article  CAS  PubMed  Google Scholar 

  27. Du K, Sharma M, Lukacs GL (2005) The Delta F508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 12:17–25. https://doi.org/10.1038/nsmb882

    Article  CAS  PubMed  Google Scholar 

  28. Mayer S, Rüdiger S, Ang HC, Joerger AC, Fersht AR (2007) Correlation of levels of folded recombinant p53 in Escherichia coli with thermodynamic stability in vitro. J Mol Biol 372:268–276. https://doi.org/10.1016/j.jmb.2007.06.044

    Article  CAS  PubMed  Google Scholar 

  29. Singh SM, Kongari N, Cabello-Villegas J, Mallela KM (2010) Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates. Proc Natl Acad Sci 107:15069–15074. https://doi.org/10.1073/pnas.1008818107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stams WA, den Boer ML, Holleman A, Appel IM, Beverloo HB, van Wering ER et al (2005) Asparagine synthetase expression is linked with l-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia. Blood 105:4223–4225

    Article  CAS  Google Scholar 

  31. Aslanian AM, Fletcher BS, Kilberg MS (2001) Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells. Biochem J 357:321–328

    Article  CAS  Google Scholar 

  32. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Investig 117:1049–1057

    Article  CAS  Google Scholar 

  33. Horikoshi A, Takei K, Iriyama N, Uenogawa K, Ishizuka H, Shiraiwa H et al (2009) Effect of l-asparaginase combined with vincristine and prednisolone on acute myeloblastic leukemia (M0) associated with non-Hodgkin lymphoma. Acta Haematol 122:54–57. https://doi.org/10.1159/000243725

    Article  PubMed  Google Scholar 

  34. Li Y, Zhang X, Hu T, Han L, Li R, Wen J et al (2014) Asparagine synthetase expression and its potential prognostic value in patients with NK/T cell lymphoma. Oncol Rep 32:853–859. https://doi.org/10.3892/or.2014.3237

    Article  PubMed  Google Scholar 

  35. Pastorczak A, Fendler W, Zalewska-Szewczyk B, Górniak P, Lejman M, Trelińska J et al (2014) Asparagine synthetase (ASNS) gene polymorphism is associated with the outcome of childhood acute lymphoblastic leukemia by affecting early response to treatment. Leuk Res 38:180–183. https://doi.org/10.1016/j.leukres.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  36. Grimes AC, Chen Y, Bansal H, Aguilar C, Perez Prado L, Quezada G et al (2021) Genetic markers for treatment-related pancreatitis in a cohort of Hispanic children with acute lymphoblastic leukemia. Support Care Cancer 29:725–731. https://doi.org/10.1007/s00520-020-05530-w

    Article  PubMed  Google Scholar 

  37. Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN et al (2006) Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25:907–916

    Article  CAS  Google Scholar 

  38. Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX (2011) BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem 286:7705–7713. https://doi.org/10.1074/jbc.M110.207639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monaco SE, Angelastro JM, Szabolcs M, Greene LA (2007) The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. Int J Cancer 120:1883–1890. https://doi.org/10.1002/ijc.22469

    Article  CAS  PubMed  Google Scholar 

  40. Sears TK, Angelastro JM (2017) The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer. Oncotarget 8:84595–84609. https://doi.org/10.18632/oncotarget.21102

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception: SMM, AFS, and NHM; (II) provision of study materials or patients: SMM and YHY; (III) collection and assembly of data: YHY, and AFS; (IV) preparation of the manuscript: AFS; (V) revision for important intellectual content: SMM and NHM; (VI) final approval of manuscript: all authors.

Corresponding author

Correspondence to Ahmed F. Soliman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, Y.H., Makkeyah, S.M., Soliman, A.F. et al. Influence of genetic variants in asparaginase pathway on the susceptibility to asparaginase-related toxicity and patients' outcome in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol 88, 313–321 (2021). https://doi.org/10.1007/s00280-021-04290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04290-6

Keywords

Navigation