Skip to main content

Advertisement

Log in

A phase 1 trial of the histone deacetylase inhibitor AR-42 in patients with neurofibromatosis type 2-associated tumors and advanced solid malignancies

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Given clinical activity of AR-42, an oral histone deacetylase inhibitor, in hematologic malignancies and preclinical activity in solid tumors, this phase 1 trial investigated the safety and tolerability of AR-42 in patients with advanced solid tumors, including neurofibromatosis type 2-associated meningiomas and schwannomas (NF2). The primary objective was to define the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs). Secondary objectives included determining pharmacokinetics and clinical activity.

Methods

This phase I trial was an open-label, single-center, dose-escalation study of single-agent AR-42 in primary central nervous system and advanced solid tumors. The study followed a 3 + 3 design with an expansion cohort at the MTD.

Results

Seventeen patients were enrolled with NF2 (n = 5), urothelial carcinoma (n = 3), breast cancer (n = 2), non-NF2-related meningioma (n = 2), carcinoma of unknown primary (n = 2), small cell lung cancer (n = 1), Sertoli cell carcinoma (n = 1), and uveal melanoma (n = 1). The recommended phase II dose is 60 mg three times weekly, for 3 weeks of a 28-day cycle. DLTs included grade 3 thrombocytopenia and grade 4 psychosis. The most common treatment-related adverse events were cytopenias, fatigue, and nausea. The best response was stable disease in 53% of patients (95% CI 26.6–78.7). Median progression-free survival (PFS) was 3.6 months (95% CI 1.2–9.1). Among evaluable patients with NF2 or meningioma (n = 5), median PFS was 9.1 months (95% CI 1.9–not reached).

Conclusion

Single-agent AR-42 is safe and well tolerated. Further studies may consider AR-42 in a larger cohort of patients with NF2 or in combination with other agents in advanced solid tumors.

Trial registration

NCT01129193, registered 5/24/2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or supplementary materials. Further data are available on request from the corresponding author, Amir Mortazavi. The data are not publicly available to prevent compromise of the privacy of the research participants.

References

  1. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. https://doi.org/10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  2. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026831

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  5. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432. https://doi.org/10.1038/sj.onc.1210610

    Article  CAS  PubMed  Google Scholar 

  6. Federico M, Bagella L (2011) Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2011:475641. https://doi.org/10.1155/2011/475641

    Article  CAS  PubMed  Google Scholar 

  7. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, Frankel SR, Chen C, Ricker JL, Arduino JM, Duvic M (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25(21):3109–3115. https://doi.org/10.1200/JCO.2006.10.2434

    Article  CAS  PubMed  Google Scholar 

  8. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, Zain J, Prince HM, Leonard JP, Geskin LJ, Reeder C, Joske D, Figg WD, Gardner ER, Steinberg SM, Jaffe ES, Stetler-Stevenson M, Lade S, Fojo AT, Bates SE (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27(32):5410–5417. https://doi.org/10.1200/JCO.2008.21.6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crump M, Coiffier B, Jacobsen ED, Sun L, Ricker JL, Xie H, Frankel SR, Randolph SS, Cheson BD (2008) Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann Oncol 19(5):964–969. https://doi.org/10.1093/annonc/mdn031

    Article  CAS  PubMed  Google Scholar 

  10. Kirschbaum M, Frankel P, Popplewell L, Zain J, Delioukina M, Pullarkat V, Matsuoka D, Pulone B, Rotter AJ, Espinoza-Delgado I, Nademanee A, Forman SJ, Gandara D, Newman E (2011) Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 29(9):1198–1203. https://doi.org/10.1200/JCO.2010.32.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogura M, Ando K, Suzuki T, Ishizawa K, Oh SY, Itoh K, Yamamoto K, Au WY, Tien HF, Matsuno Y, Terauchi T, Yamamoto K, Mori M, Tanaka Y, Shimamoto T, Tobinai K, Kim WS (2014) A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol 165(6):768–776. https://doi.org/10.1111/bjh.12819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duvic M, Dummer R, Becker JC, Poulalhon N, Ortiz Romero P, Grazia Bernengo M, Lebbe C, Assaf C, Squier M, Williams D, Marshood M, Tai F, Prince HM (2013) Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer 49(2):386–394. https://doi.org/10.1016/j.ejca.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  13. Younes A, Sureda A, Ben-Yehuda D, Zinzani PL, Ong TC, Prince HM, Harrison SJ, Kirschbaum M, Johnston P, Gallagher J, Le Corre C, Shen A, Engert A (2012) Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J Clin Oncol 30(18):2197–2203. https://doi.org/10.1200/JCO.2011.38.1350

    Article  CAS  PubMed  Google Scholar 

  14. Crump M, Andreadis C, Assouline S, Rizzieri D, Wedgwood A, McLaughlin P, Laille E, Li Z, Martell RE, Younes A (2008) Treatment of relapsed or refractory non-hodgkin lymphoma with the oral istoype-selective histone deacetylase inhibitor MGCD0103: interim results from a phase II study. J Clin Oncol 26(15_suppl):8528–8528. https://doi.org/10.1200/jco.2008.26.15_suppl.8528

    Article  Google Scholar 

  15. Bociek RG, Kuruvilla J, Pro B, Wedgwood A, Li Z, Drouin M, Patterson T, Ward R, Martell RE, Younes A (2008) Isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 demonstrates clinical activity and safety in patients with relapsed/refractory classical Hodgkin Lymphoma (HL). J Clin Oncol 26(15_suppl):8507–8507. https://doi.org/10.1200/jco.2008.26.15_suppl.8507

    Article  Google Scholar 

  16. Reid T, Valone F, Lipera W, Irwin D, Paroly W, Natale R, Sreedharan S, Keer H, Lum B, Scappaticci F, Bhatnagar A (2004) Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer 45(3):381–386. https://doi.org/10.1016/j.lungcan.2004.03.002

    Article  PubMed  Google Scholar 

  17. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, Reilly JF, Loboda A, Nebozhyn M, Fantin VR, Richon VM, Scheithauer B, Giannini C, Flynn PJ, Moore DF Jr, Zwiebel J, Buckner JC (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058. https://doi.org/10.1200/JCO.2008.19.0694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bush ML, Oblinger J, Brendel V, Santarelli G, Huang J, Akhmametyeva EM, Burns SS, Wheeler J, Davis J, Yates CW, Chaudhury AR, Kulp S, Chen CS, Chang LS, Welling DB, Jacob A (2011) AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro Oncol 13(9):983–999. https://doi.org/10.1093/neuonc/nor072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacob A, Oblinger J, Bush ML, Brendel V, Santarelli G, Chaudhury AR, Kulp S, La Perle KM, Chen CS, Chang LS, Welling DB (2012) Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope 122(1):174–189. https://doi.org/10.1002/lary.22392

    Article  CAS  PubMed  Google Scholar 

  20. Lucas DM, Alinari L, West DA, Davis ME, Edwards RB, Johnson AJ, Blum KA, Hofmeister CC, Freitas MA, Parthun MR, Wang D, Lehman A, Zhang X, Jarjoura D, Kulp SK, Croce CM, Grever MR, Chen CS, Baiocchi RA, Byrd JC (2010) The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo. PLoS ONE 5(6):e10941. https://doi.org/10.1371/journal.pone.0010941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang S, Suvannasankha A, Crean CD, White VL, Chen CS, Farag SS (2011) The novel histone deacetylase inhibitor, AR-42, inhibits gp130/Stat3 pathway and induces apoptosis and cell cycle arrest in multiple myeloma cells. Int J Cancer 129(1):204–213. https://doi.org/10.1002/ijc.25660

    Article  CAS  PubMed  Google Scholar 

  22. Lu Q, Wang DS, Chen CS, Hu YD, Chen CS (2005) Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48(17):5530–5535. https://doi.org/10.1021/jm0503749

    Article  CAS  PubMed  Google Scholar 

  23. Lu Q, Yang YT, Chen CS, Davis M, Byrd JC, Etherton MR, Umar A, Chen CS (2004) Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem 47(2):467–474. https://doi.org/10.1021/jm0303655

    Article  CAS  PubMed  Google Scholar 

  24. Chao MW, Chu PC, Chuang HC, Shen FH, Chou CC, Hsu EC, Himmel LE, Huang HL, Tu HJ, Kulp SK, Teng CM, Chen CS (2016) Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability. Oncotarget 7(2):1796–1807. https://doi.org/10.18632/oncotarget.6427

    Article  PubMed  Google Scholar 

  25. Canella A, Cordero Nieves H, Sborov DW, Cascione L, Radomska HS, Smith E, Stiff A, Consiglio J, Caserta E, Rizzotto L, Zanesi N, Stefano V, Kaur B, Mo X, Byrd JC, Efebera YA, Hofmeister CC, Pichiorri F (2015) HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide. Oncotarget 6(31):31134–31150. https://doi.org/10.18632/oncotarget.5290

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, Chen CS (2007) Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 46(4):1119–1130. https://doi.org/10.1002/hep.21804

    Article  CAS  PubMed  Google Scholar 

  27. Mortazavi A, Hoot D, Carlton P, Wang S, DeGroff V, Lu Q, Kulp S, Chen C, Clinton SK (2005) Inhibition of cell growth and induction of apoptosis in bladder cancer cell lines by a novel histone deacetylase inhibitor derived from phenylbutyrate. Proc Annu Meet Am Assoc Cancer Res 46(Suppl S):422

    Google Scholar 

  28. Mortazavi A, Bhave SL, Haghighat P, Rengel RC, Phillips GS, Yu J, Sargeant AM, Kulp SK, Chen CS, Clinton SK (2009) Antitumor effects of OSU-HDAC42, a histone deacetylase inhibitor, in bladder cancer. In: Genitourinary cancers symptosium

  29. Xu W, Xu B, Yao Y, Yu X, Shen J (2015) The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production. Biochem Biophys Res Commun 463(4):545–550. https://doi.org/10.1016/j.bbrc.2015.05.078

    Article  CAS  PubMed  Google Scholar 

  30. Bhinder AS, Varma V, Abbaoui B, Thomas-Ahner JM, Kulp SK, Chen C, Clinton SK, Mortazavi A (2011) Antitumor effects of AR-42, a novel histone deacetylase inhibitor, in embryonal carcinoma. J Clin Oncol 29(7_suppl):232–232. https://doi.org/10.1200/jco.2011.29.7_suppl.232

    Article  Google Scholar 

  31. Yang YT, Balch C, Kulp SK, Mand MR, Nephew KP, Chen CS (2009) A rationally designed histone deacetylase inhibitor with distinct antitumor activity against ovarian cancer. Neoplasia 11(6):552–563. https://doi.org/10.1593/neo.09204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mand M, Edwards C, Tumati V, Kulp SK, Chen C-S, Nephew KP, Balch C (2006) A novel histone deacetylase inhibitor with potent antiproliferative activity in ovarian cancer cells. Can Res 66(8 Supplement):1183–1183

    Google Scholar 

  33. Chen YJ, Wang WH, Wu WY, Hsu CC, Wei LR, Wang SF, Hsu YW, Liaw CC, Tsai WC (2017) Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS ONE 12(8):e0183368. https://doi.org/10.1371/journal.pone.0183368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burns SS, Akhmametyeva EM, Oblinger JL, Bush ML, Huang J, Senner V, Chen CS, Jacob A, Welling DB, Chang LS (2013) Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res 73(2):792–803. https://doi.org/10.1158/0008-5472.CAN-12-1888

    Article  CAS  PubMed  Google Scholar 

  35. Cheng H, Xie Z, Jones WP, Wei XT, Liu Z, Wang D, Kulp SK, Wang J, Coss CC, Chen CS, Marcucci G, Garzon R, Covey JM, Phelps MA, Chan KK (2016) Preclinical pharmacokinetics study of R- and S-enantiomers of the histone deacetylase inhibitor, AR-42 (NSC 731438) rodents. AAPS J 18(3):737–745. https://doi.org/10.1208/s12248-016-9876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sborov DW, Canella A, Hade EM, Mo X, Khountham S, Wang J, Ni W, Poi M, Coss C, Liu Z, Phelps MA, Mortazavi A, Andritsos L, Baiocchi RA, Christian BA, Benson DM, Flynn J, Porcu P, Byrd JC, Pichiorri F, Hofmeister CC (2017) A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leuk Lymphoma 58(10):2310–2318. https://doi.org/10.1080/10428194.2017.1298751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  Google Scholar 

  38. Cheng H, Liu Z, Kulp SK, Chen C-S, Covey JM, Chan KK (2006) Preclinical pharmacokinetic studies with s-HDAC-42 (NSC 736012), an inhibitor of histone deacetylase, by LC-MS/MS. Cancer Res 66(8):727

    Google Scholar 

  39. Liva SG, Coss CC, Wang J, Blum W, Klisovic R, Bhatnagar B, Walsh K, Geyer S, Zhao Q, Garzon R, Marcucci G, Phelps MA, Walker AR (2020) Phase I study of AR-42 and decitabine in acute myeloid leukemia. Leuk Lymphoma. https://doi.org/10.1080/10428194.2020.1719095

    Article  PubMed  Google Scholar 

  40. Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schoffski P (2008) Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs 26(5):483–488. https://doi.org/10.1007/s10637-008-9131-6

    Article  CAS  PubMed  Google Scholar 

  41. Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL, Chiao JH, Chen C, Frankel SR (2008) Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 26(1):81–87. https://doi.org/10.1007/s10637-007-9075-2

    Article  CAS  PubMed  Google Scholar 

  42. Molife LR, Attard G, Fong PC, Karavasilis V, Reid AH, Patterson S, Riggs CE Jr, Higano C, Stadler WM, McCulloch W, Dearnaley D, Parker C, de Bono JS (2010) Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann Oncol 21(1):109–113. https://doi.org/10.1093/annonc/mdp270

    Article  CAS  PubMed  Google Scholar 

  43. Hainsworth JD, Infante JR, Spigel DR, Arrowsmith ER, Boccia RV, Burris HA (2011) A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma. Cancer Invest 29(7):451–455. https://doi.org/10.3109/07357907.2011.590568

    Article  CAS  PubMed  Google Scholar 

  44. Steele NL, Plumb JA, Vidal L, Tjornelund J, Knoblauch P, Rasmussen A, Ooi CE, Buhl-Jensen P, Brown R, Evans TR, DeBono JS (2008) A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Cancer Res 14(3):804–810. https://doi.org/10.1158/1078-0432.CCR-07-1786

    Article  CAS  PubMed  Google Scholar 

  45. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, Farra Y, Young D, Grever M (2006) Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 12(13):3997–4003. https://doi.org/10.1158/1078-0432.CCR-05-2689

    Article  CAS  PubMed  Google Scholar 

  46. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J, Brooks R, Piekarz RL, Tucker E, Figg WD, Chan KK, Goldspiel B, Fojo AT, Balcerzak SP, Bates SE (2002) Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 8(3):718–728

    CAS  PubMed  Google Scholar 

  47. Porta-Sanchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P (2017) Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.007724

    Article  PubMed  PubMed Central  Google Scholar 

  48. Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WK, Gilbert MR, Chang SM, Lieberman FS, Prados MD, Fine HA (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03–03. Neuro Oncol 13(5):509–516. https://doi.org/10.1093/neuonc/nor017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitehead RP, Rankin C, Hoff PM, Gold PJ, Billingsley KG, Chapman RA, Wong L, Ward JH, Abbruzzese JL, Blanke CD (2009) Phase II trial of romidepsin (NSC-630176) in previously treated colorectal cancer patients with advanced disease: a Southwest Oncology Group study (S0336). Invest New Drugs 27(5):469–475. https://doi.org/10.1007/s10637-008-9190-8

    Article  CAS  PubMed  Google Scholar 

  50. Modesitt SC, Sill M, Hoffman JS, Bender DP, Gynecologic Oncology G (2008) A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study. Gynecol Oncol 109(2):182–186. https://doi.org/10.1016/j.ygyno.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  51. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Wong C, Aparicio A, Gandara DR, Somlo G (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142. https://doi.org/10.1158/1078-0432.CCR-08-0122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D, Larroque B, Sterkers O, Giovannini M, Kalamarides M (2015) Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol 122(2):313–320. https://doi.org/10.1007/s11060-014-1710-0

    Article  CAS  PubMed  Google Scholar 

  53. Plotkin SR, Halpin C, Blakeley JO, Slattery WH 3rd, Welling DB, Chang SM, Loeffler JS, Harris GJ, Sorensen AG, McKenna MJ, Barker FG 2nd (2009) Suggested response criteria for phase II antitumor drug studies for neurofibromatosis type 2 related vestibular schwannoma. J Neurooncol 93(1):61–77. https://doi.org/10.1007/s11060-009-9867-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asthagiri AR, Parry DM, Butman JA, Kim HJ, Tsilou ET, Zhuang Z, Lonser RR (2009) Neurofibromatosis type 2. Lancet 373(9679):1974–1986. https://doi.org/10.1016/S0140-6736(09)60259-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280(46):38879–38887. https://doi.org/10.1074/jbc.M505733200

    Article  CAS  PubMed  Google Scholar 

  56. Ramalingam SS, Maitland ML, Frankel P, Argiris AE, Koczywas M, Gitlitz B, Thomas S, Espinoza-Delgado I, Vokes EE, Gandara DR, Belani CP (2010) Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 28(1):56–62. https://doi.org/10.1200/JCO.2009.24.9094

    Article  CAS  PubMed  Google Scholar 

  57. Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, O’Connor MJ, Bang YJ (2015) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 17:33. https://doi.org/10.1186/s13058-015-0534-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Manero G, Tambaro FP, Bekele NB, Yang H, Ravandi F, Jabbour E, Borthakur G, Kadia TM, Konopleva MY, Faderl S, Cortes JE, Brandt M, Hu Y, McCue D, Newsome WM, Pierce SR, de Lima M, Kantarjian HM (2012) Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol 30(18):2204–2210. https://doi.org/10.1200/JCO.2011.38.3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Groselj B, Ruan JL, Scott H, Gorrill J, Nicholson J, Kelly J, Anbalagan S, Thompson J, Stratford MRL, Jevons SJ, Hammond EM, Scudamore CL, Kerr M, Kiltie AE (2018) Radiosensitization in vivo by histone deacetylase inhibition with no increase in early normal tissue radiation toxicity. Mol Cancer Ther 17(2):381–392. https://doi.org/10.1158/1535-7163.MCT-17-0011

    Article  CAS  PubMed  Google Scholar 

  60. Reid T, Weeks A, Vakil M, Cosgriff T, Harper T, Valone F, Magnuson D, Bhatnagar A (2004) Dose escalation study of pivanex (a histone deacetylase inhibitor) in combination with docetaxel for advanced non-small cell lung cancer. J Clin Oncol 22(14_suppl):7279–7279. https://doi.org/10.1200/jco.2004.22.90140.7279

    Article  Google Scholar 

  61. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, Schwerkoske J, Mazurczak M, Gross H, Pajon E, Jaeckle K, Galanis E (2012) Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol 14(2):215–221. https://doi.org/10.1093/neuonc/nor198

    Article  CAS  PubMed  Google Scholar 

  62. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104(12):1828–1835. https://doi.org/10.1038/bjc.2011.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa T, Takeuchi S, Yamada T, Ebi H, Sano T, Nanjo S, Ishikawa D, Sato M, Hasegawa Y, Sekido Y, Yano S (2013) EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition. Cancer Res 73(8):2428–2434. https://doi.org/10.1158/0008-5472.CAN-12-3479

    Article  CAS  PubMed  Google Scholar 

  64. Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A, Marks P, Frankel P, Sun X, Tosolini A, Eid JE, Lubiniecki GM, Issa JP (2014) A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol 167(2):185–193. https://doi.org/10.1111/bjh.13016

    Article  CAS  PubMed  Google Scholar 

  65. Chen R, Frankel P, Popplewell L, Siddiqi T, Ruel N, Rotter A, Thomas SH, Mott M, Nathwani N, Htut M, Nademanee A, Forman SJ, Kirschbaum M (2015) A phase II study of vorinostat and rituximab for treatment of newly diagnosed and relapsed/refractory indolent non-Hodgkin lymphoma. Haematologica 100(3):357–362. https://doi.org/10.3324/haematol.2014.117473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee EQ, Reardon DA, Schiff D, Drappatz J, Muzikansky A, Grimm SA, Norden AD, Nayak L, Beroukhim R, Rinne ML, Chi AS, Batchelor TT, Hempfling K, McCluskey C, Smith KH, Gaffey SC, Wrigley B, Ligon KL, Raizer JJ, Wen PY (2015) Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro Oncol 17(6):862–867. https://doi.org/10.1093/neuonc/nou350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92. https://doi.org/10.3389/fonc.2018.00092

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, Liu P (2013) Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol 9(2):255–269. https://doi.org/10.2217/fon.12.173

    Article  CAS  PubMed  Google Scholar 

  69. Jespersen H, Olofsson Bagge R, Ullenhag G, Carneiro A, Helgadottir H, Ljuslinder I, Levin M, All-Eriksson C, Andersson B, Stierner U, Nilsson LM, Nilsson JA, Ny L (2019) Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): protocol for a multicenter phase II open label study. BMC Cancer 19(1):415. https://doi.org/10.1186/s12885-019-5623-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A, Jedrzejczak WW, Gunther A, Nakorn TN, Siritanaratkul N, Corradini P, Chuncharunee S, Lee JJ, Schlossman RL, Shelekhova T, Yong K, Tan D, Numbenjapon T, Cavenagh JD, Hou J, LeBlanc R, Nahi H, Qiu L, Salwender H, Pulini S, Moreau P, Warzocha K, White D, Blade J, Chen W, de la Rubia J, Gimsing P, Lonial S, Kaufman JL, Ocio EM, Veskovski L, Sohn SK, Wang MC, Lee JH, Einsele H, Sopala M, Corrado C, Bengoudifa BR, Binlich F, Richardson PG (2014) Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 15(11):1195–1206. https://doi.org/10.1016/S1470-2045(14)70440-1

    Article  CAS  PubMed  Google Scholar 

  71. Booth L, Roberts JL, Sander C, Lee J, Kirkwood JM, Poklepovic A, Dent P (2017) The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget 8(10):16367–16386. https://doi.org/10.18632/oncotarget.14829

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mims A, Walker AR, Huang X, Sun J, Wang H, Santhanam R, Dorrance AM, Walker C, Hoellerbauer P, Tarighat SS, Chan KK, Klisovic RB, Perrotti D, Caligiuri MA, Byrd JC, Chen CS, James Lee L, Jacob S, Mrozek K, Bloomfield CD, Blum W, Garzon R, Schwind S, Marcucci G (2013) Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 27(4):871–878. https://doi.org/10.1038/leu.2012.342

    Article  CAS  PubMed  Google Scholar 

  73. Murahari S, Jalkanen AL, Kulp SK, Chen CS, Modiano JF, London CA, Kisseberth WC (2017) Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer 17(1):67. https://doi.org/10.1186/s12885-017-3046-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou R, Wu J, Tang X, Wei X, Ju C, Zhang F, Sun J, Shuai D, Zhang Z, Liu Q, Lv XB (2018) Histone deacetylase inhibitor AR-42 inhibits breast cancer cell growth and demonstrates a synergistic effect in combination with 5-FU. Oncol Lett 16(2):1967–1974. https://doi.org/10.3892/ol.2018.8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li DR, Zhang H, Peek E, Wang S, Du L, Li G, Chin AI (2015) Synergy of histone-deacetylase inhibitor AR-42 with cisplatin in bladder cancer. J Urol 194(2):547–555. https://doi.org/10.1016/j.juro.2015.02.2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liva SG, Tseng YC, Dauki AM, Sovic MG, Vu T, Henderson SE, Kuo YC, Benedict JA, Zhang X, Remaily BC, Kulp SK, Campbell M, Bekaii-Saab T, Phelps MA, Chen CS, Coss CC (2020) Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Mol Med 12(2):e9910. https://doi.org/10.15252/emmm.201809910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Di Gennaro E, Bruzzese F, Pepe S, Leone A, Delrio P, Subbarayan PR, Avallone A, Budillon A (2009) Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biol Ther 8(9):782–791. https://doi.org/10.4161/cbt.8.9.8118

    Article  PubMed  Google Scholar 

  78. Mortazavi A, Hoot D, Carlton P, Chen C, Clinton SK (2006) Modulation of ErbB family receptors by a novel histone deacetylase inhibitor, HDAC-42, in bladder cancer cell lines. Cancer Res 66(8):1184–1185

    Google Scholar 

  79. Lee JH, Park JH, Jung Y, Kim JH, Jong HS, Kim TY, Bang YJ (2006) Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol Cancer Ther 5(12):3085–3095. https://doi.org/10.1158/1535-7163.MCT-06-0419

    Article  CAS  PubMed  Google Scholar 

  80. Del Bufalo D, Desideri M, De Luca T, Di Martile M, Gabellini C, Monica V, Busso S, Eramo A, De Maria R, Milella M, Trisciuoglio D (2014) Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol Cancer 13:230. https://doi.org/10.1186/1476-4598-13-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grivas P, Mortazavi A, Picus J, Hahn NM, Milowsky MI, Hart LL, Alva A, Bellmunt J, Pal SK, Bambury RM, O’Donnell PH, Gupta S, Guancial EA, Sonpavde GP, Faltaos D, Potvin D, Christensen JG, Chao RC, Rosenberg JE (2019) Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes. Cancer 125(4):533–540. https://doi.org/10.1002/cncr.31817

    Article  CAS  PubMed  Google Scholar 

  82. Cheung M, Testa JR (2017) BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res 6(3):270–278. https://doi.org/10.21037/tlcr.2017.05.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sacco JJ, Kenyani J, Butt Z, Carter R, Chew HY, Cheeseman LP, Darling S, Denny M, Urbe S, Clague MJ, Coulson JM (2015) Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget 6(15):13757–13771. https://doi.org/10.18632/oncotarget.3765

    Article  PubMed  PubMed Central  Google Scholar 

  84. Landreville S, Agapova OA, Matatall KA, Kneass ZT, Onken MD, Lee RS, Bowcock AM, Harbour JW (2012) Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res 18(2):408–416. https://doi.org/10.1158/1078-0432.CCR-11-0946

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U01CA076576 and R01CA201382. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: CCH and AM; methodology: EMH, CCH, and AM; data collection and analysis: KAC, CCC, EMH, SGL, AM, MAP, HV, and DBW; draft preparation: KAC, EMH, SGL, AM, MAP, DWS, HV, and DBW; funding acquisition: CCH and AM; provided resources, patient referral/management: RC, PM, AM, HN, CLS, and DBW; supervision: AM, RP, MP, and DBW. All the authors read, reviewed, edited, and approved the final manuscript.

Corresponding author

Correspondence to Amir Mortazavi.

Ethics declarations

Conflict of interest

Christopher C. Coss, Sophia G. Liva, and Mitch A. Phelps are listed as inventors on a provisional patent for AR-42 for cancer-related cachexia (U.S. Patent Application No. 62/898,992). Craig C. Hofmeister has received research grants from Takeda and Oncolytics Biotech; research and personal grants from Janssen, BMS, Sanofi, Nektar, Karyopharm, Imbrium and Oncopeptides, all outside the submitted work. D. Bradley Welling is a consultant for CereXis who is a subsidiary of Recursion Pharmaceuticals. Amir Mortazavi is on the advisory board for Seattle Genetics and Pfizer and is on the scientific advisory board for Debiopharm Group. His institution (not him) has received research funding from Acerta Pharma, Genentech, Roche, Merck, Novartis, Seattle Genetics, Astellas Pharma, Mirati Therapeutics, and Bristol-Myers Squibb. The other authors declare no potential conflict of interest. The Ohio State University (OSU) holds the patent on the investigational drug AR-42 (US 10/597,022). The Technology Commercialization Office has licensed AR-42 (now called REC-2282) to Recursion Pharmaceuticals using the institution’s standard terms, conditions and approval process, in which no author participated. To assure absence of institutional conflict of interest in assessment of response and attribution of toxicity, both were reviewed by the Cancer Therapy Evaluation Program (CTEP) of the National Cancer Institute (NCI) prior to reporting results. Safety issues related to dose increases and attribution of response were monitored by the Ohio State University Data Safety Monitoring Committee and the OSU Cancer Center Institutional Review Board (IRB).

Ethics approval

This study was performed under the principles of the Declaration of Helsinki. Approval was granted by the Institutional Review Board of the Ohio State University (Protocol 2010C0006, approval date 3/24/2010).

Consent to participate

Written informed consent was obtained from all patients.

Consent for publication

Not applicable. There is no patient identifying information or image included in this article.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, K.A., Valencia, H., Newton, H. et al. A phase 1 trial of the histone deacetylase inhibitor AR-42 in patients with neurofibromatosis type 2-associated tumors and advanced solid malignancies. Cancer Chemother Pharmacol 87, 599–611 (2021). https://doi.org/10.1007/s00280-020-04229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04229-3

Keywords

Navigation