Skip to main content

Advertisement

Log in

Antitumor activity and mechanism of resistance of the novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. The benefit of chemotherapy treatment for pancreatic cancer is very limited. Therefore, new therapeutic targets and approaches are urgently needed for this deadly disease. Multi-target therapy is a potential and feasible treatment strategy. Given the important roles that histone deacetylases (HDACs) and phosphoinositide-3-kinase (PI3K) play in pancreatic cancer, we investigated the antitumor activity and mechanism of novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer.

Methods and results

MTT assay and flow cytometric analysis were used to examine the in vitro antitumor activity of CUDC-907. A BxPC-3-derived xenograft mouse model was used to determine CUDC-907 in vivo efficacy. The TUNEL assay as used to determine apoptosis in tumors in vivo post CUDC-907 treatment. Western blots were used to determine the effect of CUDC-907 on protein levels. Our results show that CUDC-907 decreased viable cells and induced cell death in a concentration-dependent manner. Furthermore, CUDC-907 showed promising in vivo antitumor activity in the BxPC-3-derived xenograft mouse model while exhibiting tolerable toxicity. Furthermore, long-term treatment with CUDC-907 induced phosphorylation of AKT, S6 (ribosomal protein S6), and ERK (extracellular regulated protein kinase), and inhibition of PI3K (phosphatidylinositol 3-kinase), mTOR (mammalian target of rapamycin), or ERK significantly enhanced CUDC-907-induced cell death in pancreatic cell lines.

Conclusion

Taken together, these findings support the clinical development of CUDC-907 for the treatment of pancreatic cancer and identify compensatory activation of mTOR and MEK/ERK as a possible mechanism of resistance to CUDC-907.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated and analyzed during this study are included in this published article.

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.can-14-0155

    Article  CAS  Google Scholar 

  2. Kikuyama M, Kamisawa T, Kuruma S, Chiba K, Kawaguchi S (2018) Early diagnosis to improve the poor prognosis of pancreatic cancer. Cancer (Basael) 10(2):48. https://doi.org/10.3390/cancers10020048

    Article  CAS  Google Scholar 

  3. Zhang Y, Yang C, Cheng H, Fan Z, Huang Q, Lu Y, Fan K, Luo G, Jin K, Wang Z, Liu C, Yu X (2018) Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 11(1):14. https://doi.org/10.1186/s13045-017-0551-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng W, Zhang B, Cai D, Zou X (2014) Therapeutic potential of histone deacetylase inhibitors in pancreatic cancer. Cancer Lett 347(2):183–190. https://doi.org/10.1016/j.canlet.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  5. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24. https://doi.org/10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142(2):164–175. https://doi.org/10.1016/j.pharmthera.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ (2003) Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89(11):2110–2115. https://doi.org/10.1038/sj.bjc.6601396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu CY, Carpenter ES, Takeuchi KK, Halbrook CJ, Peverley LV, Bien H, Hall JC, DelGiorno KE, Pal D, Song Y, Shi C, Lin RZ, Crawford HC (2014) PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Gastroenterology 147(6):1405-1416.e1407. https://doi.org/10.1053/j.gastro.2014.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baer R, Cintas C, Dufresne M, Cassant-Sourdy S, Schönhuber N, Planque L, Lulka H, Couderc B, Bousquet C, Garmy-Susini B, Vanhaesebroeck B, Pyronnet S, Saur D, Guillermet-Guibert J (2014) Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α. Genes Dev 28(23):2621–2635. https://doi.org/10.1101/gad.249409.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res: An Off J The Am Assoc Cancer Res 18(15):4104–4113. https://doi.org/10.1158/1078-0432.ccr-12-0055

    Article  CAS  Google Scholar 

  11. Oki Y, Kelly KR, Flinn I, Patel MR, Gharavi R, Ma A, Parker J, Hafeez A, Tuck D, Younes A (2017) CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 102(11):1923–1930. https://doi.org/10.3324/haematol.2017.172882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, Kelly KR, Copeland AR, Akins A, Clancy MS, Gong L, Wang J, Ma A, Viner JL, Oki Y (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17(5):622–631. https://doi.org/10.1016/s1470-2045(15)00584-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X (2019) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Niu X, Zhang W, Caldwell JT, Edwards H, Chen W, Taub JW, Zhao L, Ge Y (2015) Synergistic antitumor interactions between MK-1775 and panobinostat in preclinical models of pancreatic cancer. Cancer Lett 356(2 Pt B):656–668. https://doi.org/10.1016/j.canlet.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  15. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13(24):3271–3279. https://doi.org/10.1101/gad.13.24.3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421(1):29–42. https://doi.org/10.1042/bj20090489

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B, Nagaraj H, Jayaraman R, Pasha KM, Ethirajulu K, Chng WJ, Mustafa N, Goh BC, Benes C, McDermott U, Garnett M, Dymock B, Wood JM (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol Cancer Ther 12(2):151–161. https://doi.org/10.1158/1535-7163.mct-12-0466

    Article  CAS  PubMed  Google Scholar 

  18. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, Carr D, Deng Y, Jin W, Black S, Long B, Liu J, Dinunzio E, Windsor W, Zhang R, Zhao S, Angagaw MH, Pinheiro EM, Desai J, Xiao L, Shipps G, Hruza A, Wang J, Kelly J, Paliwal S, Gao X, Babu BS, Zhu L, Daublain P, Zhang L, Lutterbach BA, Pelletier MR, Philippar U, Siliphaivanh P, Witter D, Kirschmeier P, Bishop WR, Hicklin D, Gilliland DG, Jayaraman L, Zawel L, Fawell S, Samatar AA (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3(7):742–750. https://doi.org/10.1158/2159-8290.cd-13-0070

    Article  CAS  PubMed  Google Scholar 

  19. Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J (2017) Dual HDAC and PI3K inhibitor CUDC-907 downregulates MYC and suppresses growth of MYC-dependent cancers. Mol Cancer Ther 16(2):285–299. https://doi.org/10.1158/1535-7163.mct-16-0390

    Article  CAS  PubMed  Google Scholar 

  20. Kotian S, Zhang L, Boufraqech M, Gaskins K, Gara SK, Quezado M, Nilubol N, Kebebew E (2017) Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases. Clin Cancer Res: An Off J The Am Assoc Cancer Res 23(17):5044–5054. https://doi.org/10.1158/1078-0432.ccr-17-1043

    Article  CAS  Google Scholar 

  21. Chen Y, Peubez C, Smith V, Xiong S, Kocsis-Fodor G, Kennedy B, Wagner S, Balotis C, Jayne S, Dyer MJS, Macip S (2019) CUDC-907 blocks multiple pro-survival signals and abrogates microenvironment protection in CLL. J Cell Mol Med 23(1):340–348. https://doi.org/10.1111/jcmm.13935

    Article  CAS  PubMed  Google Scholar 

  22. Knudsen ES, O’Reilly EM, Brody JR, Witkiewicz AK (2016) Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology 150(1):48–63. https://doi.org/10.1053/j.gastro.2015.08.056

    Article  PubMed  Google Scholar 

  23. Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B, Corcoran AE, Okkenhaug K (2010) The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signa 3(134):ra60. https://doi.org/10.1126/scisignal.2001104

    Article  CAS  Google Scholar 

  24. Iyengar S, Clear A, Bödör C, Maharaj L, Lee A, Calaminici M, Matthews J, Iqbal S, Auer R, Gribben J, Joel S (2013) P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood 121(12):2274–2284. https://doi.org/10.1182/blood-2012-10-460832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de Stanchina E, Baselga J, Scher HI, Barry ST, Sawyers CL, Chandarlapaty S, Rosen N (2015) Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27(1):109–122. https://doi.org/10.1016/j.ccell.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Xie S, Ni J, McFaline-Figueroa JR, Wang Y, Bronson RT, Ligon KL, Wen PY, Roberts TM, Zhao JJ (2020) Divergent roles of PI3K isoforms in PTEN-deficient glioblastomas. Cell reports 32(13):108196. https://doi.org/10.1016/j.celrep.2020.108196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rozengurt E, Soares HP, Sinnet-Smith J (2014) Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol Cancer Ther 13(11):2477–2488. https://doi.org/10.1158/1535-7163.mct-14-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pardo OE, Arcaro A, Salerno G, Tetley TD, Valovka T, Gout I, Seckl MJ (2001) Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells. Oncogene 20(52):7658–7667. https://doi.org/10.1038/sj.onc.1204994

    Article  CAS  PubMed  Google Scholar 

  29. Rosner M, Hengstschlager M (2010) Evidence for cell cycle-dependent, rapamycin-resistant phosphorylation of ribosomal protein S6 at S240/244. Amino Acids 39(5):1487–1492. https://doi.org/10.1007/s00726-010-0615-2

    Article  CAS  PubMed  Google Scholar 

  30. Su Y, Li X, Ma J, Zhao J, Liu S, Wang G, Edwards H, Taub JW, Lin H, Ge Y (2018) Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol 148:13–26. https://doi.org/10.1016/j.bcp.2017.11.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University.

Funding

This study was supported by the School of Life Sciences of Jilin University a grant from the National Natural Science Foundation of China (NSFC 81800154).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GW; in vitro experiments, SL, YD, and TW; in vivo experiments, LZ and XN; data analysis, SL, SZ, and GW; supervision, SZ and GW; draft preparation and funding acquisition, GW.

Corresponding author

Correspondence to Guan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The animal study was conducted following internationally recognized guidelines and was approved by the Animal Research Committee of Norman Bethune College of Medicine, Jilin University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhao, S., Dong, Y. et al. Antitumor activity and mechanism of resistance of the novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer. Cancer Chemother Pharmacol 87, 415–423 (2021). https://doi.org/10.1007/s00280-020-04210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04210-0

Keywords

Navigation