Skip to main content

Advertisement

Log in

In vitro evaluation of the metabolic enzymes and drug interaction potential of triapine

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study.

Methods

Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC–MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC–MS/MS monitoring of CYP specific metabolite formation.

Results

Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity.

Conclusion

CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://clinicaltrials.gov/ct2/results?cond=&term=triapine&cntry=&state=&city=&dist (Accessed October 4th 2019).

  2. https://www.absorption.com/wp-content/uploads/2014/07/Substrate+Specificity+for+FMO-+and+CYP-Mediated+Reactions+and+Enzyme+Inactivation+in+HLM_+Methyl-p-Tolyl+Sulfide+versus+Benzydamine.pdf (Accessed 10/06/2019).

References

  1. Moore EC, Sartorelli AC (1984) Inhibition of ribonucleotide reductase by alpha-(N)-heterocyclic carboxaldehyde thiosemicarbazones. Pharmacol Ther 24(3):439–447

    Article  CAS  PubMed  Google Scholar 

  2. Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR (2009) Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 52(17):5271–5294. https://doi.org/10.1021/jm900552r

    Article  CAS  PubMed  Google Scholar 

  3. Thelander L, Reichard P (1979) Reduction of ribonucleotides. Annu Rev Biochem 48:133–158. https://doi.org/10.1146/annurev.bi.48.070179.001025

    Article  CAS  PubMed  Google Scholar 

  4. Zhou BS, Tsai P, Ker R, Tsai J, Ho R, Yu J, Shih J, Yen Y (1998) Overexpression of transfected human ribonucleotide reductase M2 subunit in human cancer cells enhances their invasive potential. Clin Exp Metas 16(1):43–49

    Article  CAS  Google Scholar 

  5. Karp JE, Giles FJ, Gojo I, Morris L, Greer J, Johnson B, Thein M, Sznol M, Low J (2008) A phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) in combination with the nucleoside analog fludarabine for patients with refractory acute leukemias and aggressive myeloproliferative disorders. Leuk Res 32(1):71–77. https://doi.org/10.1016/j.leukres.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  6. Kunos CA, Waggoner S, von Gruenigen V, Eldermire E, Pink J, Dowlati A, Kinsella TJ (2010) Phase I trial of pelvic radiation, weekly cisplatin, and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) for locally advanced cervical cancer. Clin Cancer Res 16(4):1298–1306. https://doi.org/10.1158/1078-0432.ccr-09-2469

    Article  CAS  PubMed  Google Scholar 

  7. Chao J, Synold TW, Morgan RJ Jr, Kunos C, Longmate J, Lenz HJ, Lim D, Shibata S, Chung V, Stoller RG, Belani CP, Gandara DR, McNamara M, Gitlitz BJ, Lau DH, Ramalingam SS, Davies A, Espinoza-Delgado I, Newman EM, Yen Y (2012) A phase I and pharmacokinetic study of oral 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in the treatment of advanced-stage solid cancers: a California Cancer Consortium Study. Cancer Chemother Pharmacol 69(3):835–843. https://doi.org/10.1007/s00280-011-1779-5

    Article  CAS  PubMed  Google Scholar 

  8. Zeidner JF, Karp JE, Blackford AL, Smith BD, Gojo I, Gore SD, Levis MJ, Carraway HE, Greer JM, Ivy SP, Pratz KW, McDevitt MA (2014) A phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica 99(4):672–678. https://doi.org/10.3324/haematol.2013.097246

    Article  CAS  PubMed  Google Scholar 

  9. Kunos CA, Radivoyevitch T, Waggoner S, Debernardo R, Zanotti K, Resnick K, Fusco N, Adams R, Redline R, Faulhaber P, Dowlati A (2013) Radiochemotherapy plus 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in advanced-stage cervical and vaginal cancers. Gynecol Oncol 130(1):75–80. https://doi.org/10.1016/j.ygyno.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  10. Traynor AM, Lee JW, Bayer GK, Tate JM, Thomas SP, Mazurczak M, Graham DL, Kolesar JM, Schiller JH (2010) A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced no-small cell lung cancer: Eastern Cooperative Oncology Group Study 1503. Invest New Drugs 28(1):91–97. https://doi.org/10.1007/s10637-009-9230-z

    Article  CAS  PubMed  Google Scholar 

  11. Attia S, Kolesar J, Mahoney MR, Pitot HC, Laheru D, Heun J, Huang W, Eickhoff J, Erlichman C, Holen KD (2008) A phase 2 consortium (P2C) trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) for advanced adenocarcinoma of the pancreas. Invest New Drugs 26(4):369–379. https://doi.org/10.1007/s10637-008-9123-6

    Article  CAS  PubMed  Google Scholar 

  12. Mackenzie MJ, Saltman D, Hirte H, Low J, Johnson C, Pond G, Moore MJ (2007) A Phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium. Investig New Drugs 25(6):553–558. https://doi.org/10.1007/s10637-007-9066-3

    Article  CAS  Google Scholar 

  13. Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA (2007) Phase II study of Triapine in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Investig New Drugs 25(5):471–477. https://doi.org/10.1007/s10637-007-9044-9

    Article  CAS  Google Scholar 

  14. Ma B, Goh BC, Tan EH, Lam KC, Soo R, Leong SS, Wang LZ, Mo F, Chan AT, Zee B, Mok T (2008) A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest New Drugs 26(2):169–173. https://doi.org/10.1007/s10637-007-9085-0

    Article  CAS  PubMed  Google Scholar 

  15. Nutting CM, van Herpen CM, Miah AB, Bhide SA, Machiels JP, Buter J, Kelly C, de Raucourt D, Harrington KJ (2009) Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann Oncol 20(7):1275–1279. https://doi.org/10.1093/annonc/mdn775

    Article  CAS  PubMed  Google Scholar 

  16. Pelivan K, Frensemeier LM, Karst U, Koellensperger G, Heffeter P, Keppler BK, Kowol CR (2018) Comparison of metabolic pathways of different alpha-N-heterocyclic thiosemicarbazones. Anal Bioanal Chem 410(9):2343–2361. https://doi.org/10.1007/s00216-018-0889-x

    Article  CAS  PubMed  Google Scholar 

  17. Pelivan K, Frensemeier L, Karst U, Koellensperger G, Bielec B, Hager S, Heffeter P, Keppler BK, Kowol CR (2017) Understanding the metabolism of the anticancer drug Triapine: electrochemical oxidation, microsomal incubation and in vivo analysis using LC-HRMS. Analyst 142(17):3165–3176. https://doi.org/10.1039/c7an00902j

    Article  CAS  PubMed  Google Scholar 

  18. Kunos CA, Chu E, Beumer JH, Sznol M, Ivy SP (2017) Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies. Cancer Chemother Pharmacol 79(1):201–207. https://doi.org/10.1007/s00280-016-3200-x

    Article  CAS  PubMed  Google Scholar 

  19. Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64(12):1147–1161. https://doi.org/10.1007/s00228-008-0553-z

    Article  CAS  PubMed  Google Scholar 

  20. Feun L, Modiano M, Lee K, Mao J, Marini A, Savaraj N, Plezia P, Almassian B, Colacino E, Fischer J, MacDonald S (2002) Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother Pharmacol 50(3):223–229. https://doi.org/10.1007/s00280-002-0480-0

    Article  CAS  PubMed  Google Scholar 

  21. Murren J, Modiano M, Clairmont C, Lambert P, Savaraj N, Doyle T, Sznol M (2003) Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for five days in patients with advanced solid tumors. Clin Cancer Res 9(11):4092–4100

    CAS  PubMed  Google Scholar 

  22. Yang X, Gandhi YA, Duignan DB, Morris ME (2009) Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. AAPS J 11(3):511–525. https://doi.org/10.1208/s12248-009-9124-1

    Article  CAS  PubMed  Google Scholar 

  23. Maiman M, Fruchter RG, Clark M, Arrastia CD, Matthews R, Gates EJ (1997) Cervical cancer as an AIDS-defining illness. Obstet Gynecol 89(1):76–80

    Article  CAS  PubMed  Google Scholar 

  24. Khojasteh SC, Prabhu S, Kenny JR, Halladay JS, Lu AY (2011) Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 36(1):1–16. https://doi.org/10.1007/s13318-011-0024-2

    Article  CAS  PubMed  Google Scholar 

  25. Kiesel BF, Parise RA, Guo J, Huryn DM, Johnston PA, Colombo R, Sen M, Grandis JR, Beumer JH, Eiseman JL (2016) Toxicity, pharmacokinetics and metabolism of a novel inhibitor of IL-6-induced STAT3 activation. Cancer Chemother Pharmacol 78(6):1225–1235. https://doi.org/10.1007/s00280-016-3181-9

    Article  CAS  PubMed  Google Scholar 

  26. Pillai VC, Strom SC, Caritis SN, Venkataramanan R (2013) A sensitive and specific CYP cocktail assay for the simultaneous assessment of human cytochrome P450 activities in primary cultures of human hepatocytes using LC-MS/MS. J Pharm Biomed Anal 74:126–132. https://doi.org/10.1016/j.jpba.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  27. Matsumoto J, Kiesel BF, Parise RA, Guo J, Taylor S, Huang M, Eiseman JL, Ivy SP, Kunos C, Chu E, Beumer JH (2017) LC-MS/MS assay for the quantitation of the ribonucleotide reductase inhibitor triapine in human plasma. J Pharm Biomed Anal 146:154–160. https://doi.org/10.1016/j.jpba.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  28. Casarett and Doull’s Toxicology: The Basic Science of Poisons (2008). 7th edition edn. McGraw-Hill, New York. https://doi.org/10.1036/0071470514

  29. DeChristoforo R, Penzak SR (2004) Tenofovir: a nucleotide analogue reverse-transcriptase inhibitor for treatment of HIV infection. Am J Health Syst Pharm 61(1):86–98 (quiz 99–100)

    Article  CAS  PubMed  Google Scholar 

  30. https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021752s005lbl.pdf. Accessed 1 June 2020

  31. Blum MR, Chittick GE, Begley JA, Zong J (2007) Steady-state pharmacokinetics of emtricitabine and tenofovir disoproxil fumarate administered alone and in combination in healthy volunteers. J Clin Pharmacol 47(6):751–759. https://doi.org/10.1177/0091270007300951

    Article  CAS  PubMed  Google Scholar 

  32. Bang LM, Scott LJ (2003) Emtricitabine: an antiretroviral agent for HIV infection. Drugs 63(22):2413–2424 (Discussion 2425–2416)

    Article  CAS  PubMed  Google Scholar 

  33. Palamanda J, Feng WW, Lin CC, Nomeir AA (2000) Stimulation of tolbutamide hydroxylation by acetone and acetonitrile in human liver microsomes and in a cytochrome P-450 2C9-reconstituted system. Drug Metab Disposit 28(1):38–43

    CAS  Google Scholar 

  34. Ngui JS, Chen Q, Shou M, Wang RW, Stearns RA, Baillie TA, Tang W (2001) In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4′- and 10-hydroxywarfarin. Drug Metab Disposit 29(6):877–886

    CAS  Google Scholar 

  35. Zhang Z, Li Y, Shou M, Zhang Y, Ngui JS, Stearns RA, Evans DC, Baillie TA, Tang W (2004) Influence of different recombinant systems on the cooperativity exhibited by cytochrome P4503A4. Xenobiotica 34(5):473–486. https://doi.org/10.1080/00498250410001691271

    Article  CAS  PubMed  Google Scholar 

  36. Sugiyama M, Fujita K-I, Murayama N, Akiyama Y, Yamazaki H, Sasaki Y (2011) Sorafenib and Sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1′-hydroxylation. Drug Metab Dispos 39(5):757–762. https://doi.org/10.1124/dmd.110.037853

    Article  CAS  PubMed  Google Scholar 

  37. Sevrioukova IF, Poulos TL (2015) Anion-dependent stimulation of CYP3A4 monooxygenase. Biochemistry 54(26):4083–4096. https://doi.org/10.1021/acs.biochem.5b00510

    Article  CAS  PubMed  Google Scholar 

  38. Tang W, Stearns RA, Kwei GY, Iliff SA, Miller RR, Egan MA, Yu NX, Dean DC, Kumar S, Shou M, Lin JH, Baillie TA (1999) Interaction of diclofenac and quinidine in monkeys: stimulation of diclofenac metabolism. J Pharmacol Exp Ther 291(3):1068–1074

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raman Venkataramanan or Jan H. Beumer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Kiesel, B.F., Chaphekar, N. et al. In vitro evaluation of the metabolic enzymes and drug interaction potential of triapine. Cancer Chemother Pharmacol 86, 633–640 (2020). https://doi.org/10.1007/s00280-020-04154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04154-5

Keywords

Navigation