Skip to main content

Advertisement

Log in

Detection of trifluridine in tumors of patients with metastatic colorectal cancer treated with trifluridine/tipiracil

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Trifluridine (FTD) is the active component of the nucleoside chemotherapeutic drug trifluridine/tipiracil (FTD/TPI), which is approved worldwide for the treatment of patients with metastatic gastrointestinal cancer. FTD exerts cytotoxic effects via its incorporation into DNA, but FTD has not been detected in the tumor specimens of patients. The purpose of this study was to detect FTD in tumors resected from metastatic colorectal cancer (mCRC) patients who were administered FTD/TPI. Another purpose was to investigate the turnover rate of FTD in tumors and bone marrow in a mouse model.

Methods

Tumors and normal tissue specimens were obtained from mCRC patients who were administered FTD/TPI or placebo at Kyushu University Hospital. Tumors and bone marrow were resected from mice with peritoneal dissemination treated with FTD/TPI. To detect and quantitate FTD incorporated into DNA, immunohistochemical staining of paraffin-embedded specimens (IHC-p staining) and slot-blot analysis of DNA purified from these tissues were performed using an anti-BrdU antibody. IHC-p staining of proliferation and apoptosis markers was also performed.

Results

FTD was detected in metastatic tumors obtained from mCRC patients who were administered FTD/TPI, but who had discontinued the treatment several weeks before surgery. In a peritoneal dissemination mouse model, FTD was still detected in tumors 13 days after the cessation of FTD/TPI treatment, but had disappeared from bone marrow within 6 days.

Conclusion

These results indicate that FTD persists longer in tumors than in bone marrow, which may cause a sustained antitumor effect with tolerable hematotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

FTD:

Trifluridine

FTD/TPI:

Trifluridine/tipiracil

IHC-p staining:

Immunohistochemical staining of paraffin-embedded tumor tissue

mCRC:

Metastatic colorectal cancer

PBMCs:

Peripheral blood mononuclear cells

References

  1. Yoshino T, Mizunuma N, Yamazaki K, Nishina T, Komatsu Y, Baba H, Tsuji A, Yamaguchi K, Muro K, Sugimoto N, Tsuji Y, Moriwaki T, Esaki T, Hamada C, Tanase T, Ohtsu A (2012) TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 13(10):993–1001. https://doi.org/10.1016/s1470-2045(12)70345-5

    Article  CAS  PubMed  Google Scholar 

  2. Mayer RJ, Van Cutsem E, Falcone A, Yoshino T, Garcia-Carbonero R, Mizunuma N, Yamazaki K, Shimada Y, Tabernero J, Komatsu Y, Sobrero A, Boucher E, Peeters M, Tran B, Lenz HJ, Zaniboni A, Hochster H, Cleary JM, Prenen H, Benedetti F, Mizuguchi H, Makris L, Ito M, Ohtsu A, Grp RS (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372(20):1909–1919. https://doi.org/10.1056/NEJMoa1414325

    Article  PubMed  Google Scholar 

  3. Bando H, Doi T, Muro K, Yasui H, Nishina T, Yamaguchi K, Takahashi S, Nomura S, Kuno H, Shitara K, Sato A, Ohtsu A (2016) A multicenter phase II study of TAS-102 monotherapy in patients with pre-treated advanced gastric cancer (EPOC1201). Eur J Cancer (Oxford, England: 1990) 62:46–53. https://doi.org/10.1016/j.ejca.2016.04.009

    Article  CAS  Google Scholar 

  4. Shitara K, Doi T, Dvorkin M, Mansoor W, Arkenau HT, Prokharau A, Alsina M, Ghidini M, Faustino C, Gorbunova V, Zhavrid E, Nishikawa K, Hosokawa A, Yalcin S, Fujitani K, Beretta GD, Van Cutsem E, Winkler RE, Makris L, Ilson DH, Tabernero J (2018) Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 19(11):1437–1448. https://doi.org/10.1016/s1470-2045(18)30739-3

    Article  CAS  PubMed  Google Scholar 

  5. Fukushima M, Suzuki N, Emura T, Yano S, Kazuno H, Tada Y, Yamada Y, Asao T (2000) Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2'-deoxyribonucleosides. Biochem Pharmacol 59(10):1227–1236. https://doi.org/10.1016/s0006-2952(00)00253-7

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto K, Yokogawa T, Ueno H, Oguchi K, Kazuno H, Ishida K, Tanaka N, Osada A, Yamada Y, Okabe H, Matsuo K (2015) Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2'-deoxy-5-fluorouridine into DNA. Int J Oncol 46(6):2327–2334. https://doi.org/10.3892/ijo.2015.2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitao H, Morodomi Y, Niimi S, Kiniwa M, Shigeno K, Matsuoka K, Kataoka Y, Iimori M, Tokunaga E, Saeki H, Oki E, Maehara Y (2016) The antibodies against 5-bromo-2'-deoxyuridine specifically recognize trifluridine incorporated into DNA. Sci Rep 6:25286. https://doi.org/10.1038/srep25286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi K, Yoshisue K, Chiba M, Nakanishi T, Tamai I (2018) Contribution of equilibrative nucleoside transporter(s) to intestinal basolateral and apical transports of anticancer trifluridine. Biopharm Drug Dispos 39(1):38–46. https://doi.org/10.1002/bdd.2110

    Article  CAS  PubMed  Google Scholar 

  9. Edahiro K, Iimori M, Kobunai T, Morikawa-Ichinose T, Miura D, Kataoka Y, Niimi S, Wakasa T, Saeki H, Oki E, Kitao H, Maehara Y (2018) Thymidine kinase 1 Loss confers trifluridine resistance without affecting 5-fluorouracil metabolism and cytotoxicity. Mol Cancer Res 16(10):1483–1490. https://doi.org/10.1158/1541-7786.MCR-17-0686

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka Y, Iimori M, Niimi S, Tsukihara H, Wakasa T, Saeki H, Oki E, Maehara Y, Kitao H (2019) Cytotoxicity of trifluridine correlates with the thymidine kinase 1 expression level. Sci Rep 9(1):7964. https://doi.org/10.1038/s41598-019-44399-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Emura T, Nakagawa F, Fujioka A, Ohshimo H, Yokogawa T, Okabe H, Kitazato K (2004) An optimal dosing schedule for a novel combination antimetabolite, TAS-102, based on its intracellular metabolism and its incorporation into DNA. Int J Mol Med 13(2):249–255. https://doi.org/10.3892/ijmm.13.4.545

    CAS  PubMed  Google Scholar 

  12. Tanaka N, Sakamoto K, Okabe H, Fujioka A, Yamamura K, Nakagawa F, Nagase H, Yokogawa T, Oguchi K, Ishida K, Osada A, Kazuno H, Yamada Y, Matsuo K (2014) Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models. Oncol Rep 32(6):2319–2326. https://doi.org/10.3892/or.2014.3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsuoka K, Iimori M, Niimi S, Tsukihara H, Watanabe S, Kiyonari S, Kiniwa M, Ando K, Tokunaga E, Saeki H, Oki E, Maehara Y, Kitao H (2015) Trifluridine induces p53-dependent sustained G2 phase Arrest with Its Massive Misincorporation into DNA and Few DNA strand Breaks. Mol Cancer Ther 14(4):1004–1013. https://doi.org/10.1158/1535-7163.mct-14-0236

    Article  CAS  PubMed  Google Scholar 

  14. Nakanishi R, Kitao H, Kiniwa M, Morodomi Y, Iimori M, Kurashige J, Sugiyama M, Nakashima Y, Saeki H, Oki E, Maehara Y (2017) Monitoring trifluridine incorporation in the peripheral blood mononuclear cells of colorectal cancer patients under trifluridine/tipiracil medication. Sci Rep 7(1):16969. https://doi.org/10.1038/s41598-017-17282-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki N, Nakagawa F, Takechi T (2017) Trifluridine/tipiracil increases survival rates in peritoneal dissemination mouse models of human colorectal and gastric cancer. Oncol Lett 14(1):639–646. https://doi.org/10.3892/ol.2017.6258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Backus HH, Dukers DF, van Groeningen CJ, Vos W, Bloemena E, Wouters D, van Riel JM, Smid K, Giaccone G, Pinedo HM, Peters GJ (2001) 5-Fluorouracil induced Fas upregulation associated with apoptosis in liver metastases of colorectal cancer patients. Ann Oncol 12(2):209–216. https://doi.org/10.1023/a:1008331525368

    Article  CAS  PubMed  Google Scholar 

  17. Swales JG, Hamm G, Clench MR, Goodwin RJA (2019) Mass spectrometry imaging and its application in pharmaceutical research and development: a concise review. Int J Mass Spectrom 437:99–112. https://doi.org/10.1016/j.ijms.2018.02.007

    Article  CAS  Google Scholar 

  18. Yamashita F, Komoto I, Oka H, Kuwata K, Takeuchi M, Nakagawa F, Yoshisue K, Chiba M (2015) Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse. Cancer Chemother Pharmacol 76(2):325–333. https://doi.org/10.1007/s00280-015-2805-9

    Article  CAS  PubMed  Google Scholar 

  19. Utsugi T (2013) New challenges and inspired answers for anticancer drug discovery and development. Jpn J Clin Oncol 43(10):945–953. https://doi.org/10.1093/jjco/hyt131

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuboki Y, Nishina T, Shinozaki E, Yamazaki K, Shitara K, Okamoto W, Kajiwara T, Matsumoto T, Tsushima T, Mochizuki N, Nomura S, Doi T, Sato A, Ohtsu A, Yoshino T (2017) TAS-102 plus bevacizumab for patients with metastatic colorectal cancer refractory to standard therapies (C-TASK FORCE): an investigator-initiated, open-label, single-arm, multicentre, phase 1/2 study. Lancet Oncol 18(9):1172–1181. https://doi.org/10.1016/S1470-2045(17)30425-4

    Article  PubMed  Google Scholar 

  21. Pfeiffer P, Yilmaz M, Moller S, Zitnjak D, Maltha L, Krogh M, Winther S, Petersen L, Hejlersen F, Thomsen K, Qvortrup C (2019) Bevacizumab improves efficacy of trifluridine/tipiracil (TAS-102) in patients with chemorefractory metastatic colorectal cancer: a Danish randomized trial. Ann Cncol Official J Eur Soc Med Oncol 30(Suppl 4):iv130–iv131. https://doi.org/10.1093/annonc/mdz154.013

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Masako Kosugi and Atsuko Yamaguchi for their expert technical assistance, and Ms. Yuko Kubota and Miki Nakashima for their help with the immunohistochemical staining of clinical specimens. We also thank H. Nikki March, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kitao.

Ethics declarations

Conflict of interest

M.N., K.M., and T.W. are employees of Taiho Pharmaceutical Co. Ltd.; H.K. is a staff member of the Joint Research Department funded by Taiho Pharmaceutical Co. Ltd. located in Kyushu University. Y.M. received research funds from Taiho Pharmaceutical Co. Ltd. Other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 68964 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, Y., Nakanishi, R., Nukatsuka, M. et al. Detection of trifluridine in tumors of patients with metastatic colorectal cancer treated with trifluridine/tipiracil. Cancer Chemother Pharmacol 85, 1029–1038 (2020). https://doi.org/10.1007/s00280-020-04072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04072-6

Keywords

Navigation