Skip to main content

Advertisement

Log in

Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Chemobrain refers to a common sequela experienced by a substantial subset of cancer patients exposed to chemotherapeutic treatment, a phenomenon that dramatically deteriorates the survivors’ quality of life and prevents them from restoring their pre-cancer life. This review is intended to address the current knowledge regarding the mechanisms underlying the pathophysiology of the chemobrain phenomenon, with special focus on the antineoplastic agent ‘’doxorubicin’’, which has been shown to be implicated in strenuous central neurotoxicity despite being—almost entirely—peripherally confined. Moreover, the assessment of the post-chemotherapy cognitive impairment in both human and animal subjects, and the potential pharmacotherapy and behavioral intervention strategies are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cavaletti G, Alberti P, Marmiroli P (2015) Chemotherapy-induced peripheral neurotoxicity in cancer survivors: an underdiagnosed clinical entity? Am Soc Clin Oncol Educ Book. https://doi.org/10.14694/EdBook_AM.2015.35.e553

    Article  PubMed  Google Scholar 

  2. Corrie PG (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36:24–28. https://doi.org/10.1016/j.mpmed.2007.10.012

    Article  Google Scholar 

  3. Silberfarb PM, Philibert D, Levine PM (1980) Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. Am J Psychiatry 137(5):597–601. https://doi.org/10.1176/ajp.137.5.597

    Article  CAS  PubMed  Google Scholar 

  4. Hayslip J, Dressler EV, Weiss H, Taylor TJ, Chambers M, Noel T, Miriyala S, Keeney JT, Ren X, Sultana R, Vore M, Butterfield DA, St Clair D, Moscow JA (2015) Plasma TNF-alpha and soluble TNF receptor levels after doxorubicin with or without co-administration of Mesna—a randomized cross-over clinical study. PLoS ONE 10(4):e0124988. https://doi.org/10.1371/journal.pone.0124988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100(11):2292–2299. https://doi.org/10.1002/cncr.20272

    Article  CAS  PubMed  Google Scholar 

  6. Schagen SB, Wefel JS (2013) Chemotherapy-related changes in cognitive functioning. EJC Suppl EJC Off J EORTC Eur Organ Res Treat Cancer [et al] 11(2):225–232. https://doi.org/10.1016/j.ejcsup.2013.07.007

    Article  Google Scholar 

  7. Ahles TA, Saykin AJ (2002) Breast cancer chemotherapy-related cognitive dysfunction. Clin Breast Cancer 3(Suppl 3):S84–S90

    Article  CAS  PubMed  Google Scholar 

  8. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF (2000) Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 18(14):2695–2701. https://doi.org/10.1200/JCO.2000.18.14.2695

    Article  CAS  PubMed  Google Scholar 

  9. Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 13(2):92–105. https://doi.org/10.1038/nrclinonc.2015.152

    Article  CAS  PubMed  Google Scholar 

  10. Geschwind MD, Haman A, Miller BL (2007) Rapidly progressive dementia. Neurol Clin 25(3):783-vii. https://doi.org/10.1016/j.ncl.2007.04.001

    Article  PubMed Central  Google Scholar 

  11. Aluise CD, Sultana R, Tangpong J, Vore M, St Clair D, Moscow JA, Butterfield DA (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol 678:147–156

    Article  CAS  PubMed  Google Scholar 

  12. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285 (pii:CMC-AbsEpub-014)

    Article  CAS  PubMed  Google Scholar 

  13. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229. https://doi.org/10.1124/pr.56.2.6

    Article  CAS  PubMed  Google Scholar 

  14. Bigotte L, Arvidson B, Olsson Y (1982) Cytofluorescence localization of adriamycin in the nervous system. I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathol 57(2–3):121–129

    Article  CAS  PubMed  Google Scholar 

  15. Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139. https://doi.org/10.1016/j.nbd.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  16. Byeon HJ, le Thao Q, Lee S, Min SY, Lee ES, Shin BS, Choi HG, Youn YS (2016) Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release Off J Control Release Soc 225:301–313. https://doi.org/10.1016/j.jconrel.2016.01.046

    Article  CAS  Google Scholar 

  17. Schmidt M (2016) Dose-dense chemotherapy in metastatic breast cancer: shortening the time interval for a better therapeutic index. Breast Care (Basel, Switz) 11(1):22–26. https://doi.org/10.1159/000442726

    Article  Google Scholar 

  18. Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19(4):424–436

    Article  CAS  Google Scholar 

  19. Green AE, Rose PG (2006) Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomed 1(3):229–239

    CAS  Google Scholar 

  20. Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166(3):796–807. https://doi.org/10.1016/j.neuroscience.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  21. Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39(11):1147–1154. https://doi.org/10.1080/10715760500143478

    Article  CAS  PubMed  Google Scholar 

  22. Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA (2007) Glutathione elevation by gamma-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implication for chemobrain. J Neurosci Res 85(3):497–503. https://doi.org/10.1002/jnr.21158

    Article  CAS  PubMed  Google Scholar 

  23. Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 100(1):191–201. https://doi.org/10.1111/j.1471-4159.2006.04179.x

    Article  CAS  PubMed  Google Scholar 

  24. Daiber A, Daub S, Bachschmid M, Schildknecht S, Oelze M, Steven S, Schmidt P, Megner A, Wada M, Tanabe T, Munzel T, Bottari S, Ullrich V (2013) Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications. Int J Mol Sci 14(4):7542–7570. https://doi.org/10.3390/ijms14047542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. https://doi.org/10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the Butterfield Laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174. https://doi.org/10.1016/j.freeradbiomed.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  27. Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA (2018) Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget 9(54):30324–30339. https://doi.org/10.18632/oncotarget.25718

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK 3rd, Roux-Lombard P, Burger D (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389

    Article  CAS  PubMed  Google Scholar 

  29. Aluise CD, Miriyala S, Noel T, Sultana R, Jungsuwadee P, Taylor TJ, Cai J, Pierce WM, Vore M, Moscow JA, St Clair DK, Butterfield DA (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-alpha release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50(11):1630–1638. https://doi.org/10.1016/j.freeradbiomed.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  30. Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254 (pii:JST.JSTAGE/jphs/09292SC)

    Article  CAS  PubMed  Google Scholar 

  31. Butler MP, O’Connor JJ, Moynagh PN (2004) Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 124(2):319–326. https://doi.org/10.1016/j.neuroscience.2003.11.040

    Article  CAS  PubMed  Google Scholar 

  32. Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6(5):237–245. https://doi.org/10.1016/j.cnr.2006.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031. https://doi.org/10.1152/physrev.00049.2005

    Article  CAS  PubMed  Google Scholar 

  34. Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353. https://doi.org/10.1016/j.nurt.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baune BTCM-L, Eyre H, Jawahar C, Anscomb H, Körner H (2012) Tumour necrosis factor-alpha mediated mechanisms of cognitive dysfunction. Transl Neurosci 3:263–277. https://doi.org/10.2478/s13380-012-0027-8

    Article  Google Scholar 

  36. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80(3):194–210 (pii:S1074742703000881)

    Article  CAS  PubMed  Google Scholar 

  37. Pal S, Ahir M, Sil PC (2012) Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves of Cajanus indicus L. via NF-kappaB and mitochondria dependent pathways. Free Radic Res 46(6):785–798. https://doi.org/10.3109/10715762.2012.678841

    Article  CAS  PubMed  Google Scholar 

  38. El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS (2018) Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol 55(7):5727–5740. https://doi.org/10.1007/s12035-017-0797-7

    Article  CAS  PubMed  Google Scholar 

  39. Kwatra M, Jangra A, Mishra M, Sharma Y, Ahmed S, Ghosh P, Kumar V, Vohora D, Khanam R (2016) Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus. Neurochem Res 41(9):2352–2366. https://doi.org/10.1007/s11064-016-1949-2

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez SP, Muzerelle A, Scotto-Lomassese S, Barik J, Gruart A, Delgado-Garcia JM, Gaspar P (2017) Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42(2):512–523. https://doi.org/10.1038/npp.2016.134

    Article  CAS  PubMed  Google Scholar 

  41. Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618. https://doi.org/10.1523/JNEUROSCI.2721-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. https://doi.org/10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231

    Article  CAS  PubMed  Google Scholar 

  44. Squire LR (1993) The hippocampus and spatial memory. Trends Neurosci 16(2):56–57 (pii:0166-2236(93)90016-F)

    Article  CAS  PubMed  Google Scholar 

  45. Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18(7):1954–1965. https://doi.org/10.1158/1078-0432.CCR-11-2000

    Article  CAS  PubMed  Google Scholar 

  46. Kitamura Y, Hattori S, Yoneda S, Watanabe S, Kanemoto E, Sugimoto M, Kawai T, Machida A, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2015) Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 292:184–193. https://doi.org/10.1016/j.bbr.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  47. Kitamura Y, Kanemoto E, Sugimoto M, Machida A, Nakamura Y, Naito N, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2017) Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats. Naunyn Schmiedebergs Arch Pharmacol 390(4):369–378. https://doi.org/10.1007/s00210-016-1338-z

    Article  CAS  PubMed  Google Scholar 

  48. Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27(1):22–32. https://doi.org/10.1016/j.bbi.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  49. Seguin JA, Brennan J, Mangano E, Hayley S (2009) Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 5:5–14

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE, Lindvall O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–9712. https://doi.org/10.1523/JNEUROSCI.2723-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S (2012) Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun 26(1):18–23. https://doi.org/10.1016/j.bbi.2011.07.225

    Article  CAS  PubMed  Google Scholar 

  52. Liu RY, Zhang Y, Coughlin BL, Cleary LJ, Byrne JH (2014) Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase. J Neurosci 34(40):13289–13300. https://doi.org/10.1523/JNEUROSCI.0538-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salas-Ramirez KY, Bagnall C, Frias L, Abdali SA, Ahles TA, Hubbard K (2015) Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res 292:133–141. https://doi.org/10.1016/j.bbr.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guan Z, Kim JH, Lomvardas S, Holick K, Xu S, Kandel ER, Schwartz JH (2003) p38 MAP kinase mediates both short-term and long-term synaptic depression in aplysia. J Neurosci 23(19):7317–7325 (pii:23/19/7317)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lakshminarasimhan H, Coughlin BL, Darr AS, Byrne JH (2017) Characterization and reversal of Doxorubicin-mediated biphasic activation of ERK and persistent excitability in sensory neurons of Aplysia californica. Sci Rep 7(1):4533. https://doi.org/10.1038/s41598-017-04634-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardoso S, Santos RX, Carvalho C, Correia S, Pereira GC, Pereira SS, Oliveira PJ, Santos MS, Proenca T, Moreira PI (2008) Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic Biol Med 45(10):1395–1402. https://doi.org/10.1016/j.freeradbiomed.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  57. Tangpong J, Miriyala S, Noel T, Sinthupibulyakit C, Jungsuwadee P, St Clair DK (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience 175:292–299. https://doi.org/10.1016/j.neuroscience.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  58. Usta Y, Ismailoglu UB, Bakkaloglu A, Orhan D, Besbas N, Sahin-Erdemli I, Ozen S (2004) Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol 19(8):840–843. https://doi.org/10.1007/s00467-004-1538-5

    Article  PubMed  Google Scholar 

  59. Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2016) TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging (Albany NY) 8(12):3507–3519. https://doi.org/10.18632/aging.101144

    Article  Google Scholar 

  60. Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2018) Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 86:65–71. https://doi.org/10.1016/j.mcn.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  61. Ahles TA, Saykin AJ, Noll WW, Furstenberg CT, Guerin S, Cole B, Mott LA (2003) The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology 12(6):612–619. https://doi.org/10.1002/pon.742

    Article  PubMed  Google Scholar 

  62. Small BJ, Rawson KS, Walsh E, Jim HS, Hughes TF, Iser L, Andrykowski MA, Jacobsen PB (2011) Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer 117(7):1369–1376. https://doi.org/10.1002/cncr.25685

    Article  CAS  PubMed  Google Scholar 

  63. Morley KI, Montgomery GW (2001) The genetics of cognitive processes: candidate genes in humans and animals. Behav Genet 31(6):511–531

    Article  CAS  PubMed  Google Scholar 

  64. McAllister TW, Ahles TA, Saykin AJ, Ferguson RJ, McDonald BC, Lewis LD, Flashman LA, Rhodes CH (2004) Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep 6(5):364–371

    Article  PubMed  Google Scholar 

  65. Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ (2015) Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 72(1):86–96. https://doi.org/10.1016/j.cyto.2014.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, Katz A, Sidransky D, Kolb B, Kovalchuk O (2017) Growth of malignant extracranial tumors alters microRNAome in the prefrontal cortex of TumorGraft mice. Oncotarget 8(51):88276–88293. https://doi.org/10.18632/oncotarget.19835

    Article  PubMed  PubMed Central  Google Scholar 

  67. Boykoff N, Moieni M, Subramanian SK (2009) Confronting chemobrain: an in-depth look at survivors' reports of impact on work, social networks, and health care response. J Cancer Surviv 3(4):223–232. https://doi.org/10.1007/s11764-009-0098-x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hess LM, Insel KC (2007) Chemotherapy-related change in cognitive function: a conceptual model. Oncol Nurs Forum 34(5):981–994. https://doi.org/10.1188/07.onf.981-994

    Article  PubMed  Google Scholar 

  69. Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol Off J Am Soc Clin Onc 30(30):3675–3686. https://doi.org/10.1200/jco.2012.43.0116

    Article  CAS  Google Scholar 

  70. Merriman JD, Aouizerat BE, Cataldo JK, Dunn L, Cooper BA, West C, Paul SM, Baggott CR, Dhruva A, Kober K, Langford DJ, Leutwyler H, Ritchie CS, Abrams G, Dodd M, Elboim C, Hamolsky D, Melisko M, Miaskowski C (2014) Association between an interleukin 1 receptor, type I promoter polymorphism and self-reported attentional function in women with breast cancer. Cytokine 65(2):192–201. https://doi.org/10.1016/j.cyto.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  71. Hensley ML, Peterson B, Silver RT, Larson RA, Schiffer CA, Szatrowski TP (2000) Risk factors for severe neuropsychiatric toxicity in patients receiving interferon alfa-2b and low-dose cytarabine for chronic myelogenous leukemia: analysis of Cancer and Leukemia Group B 9013. J Clin Oncol Off J Am Soc Clin Oncol 18(6):1301–1308. https://doi.org/10.1200/jco.2000.18.6.1301

    Article  CAS  Google Scholar 

  72. van Dam FS, Schagen SB, Muller MJ, Boogerd W, vd Wall E, Droogleever Fortuyn ME, Rodenhuis S (1998) Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst 90(3):210–218

    Article  PubMed  Google Scholar 

  73. Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Hanscom BS, Mulrooney TJ, Schwartz GN, Kaufman PA (2008) Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat 110(1):143–152. https://doi.org/10.1007/s10549-007-9686-5

    Article  CAS  PubMed  Google Scholar 

  74. Wagner LSJ, Butt Z, Lai J, Cella D (2009) Measuring patient self-reported cognitive function: development of the functional assessment of cancer therapy-cognitive function instrument. J Support Oncol 7(6):W32–W39

    Google Scholar 

  75. Selamat MH, Loh SY, Mackenzie L, Vardy J (2014) Chemobrain experienced by breast cancer survivors: a meta-ethnography study investigating research and care implications. PLoS ONE 9(9):e108002. https://doi.org/10.1371/journal.pone.0108002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ki Moore IM, Hockenberry MJ, Krull KR (2013) Cancer-related cognitive changes in children, adolescents and adult survivors of childhood cancers. Semin Oncol Nurs 29(4):248–259. https://doi.org/10.1016/j.soncn.2013.08.005

    Article  PubMed  Google Scholar 

  77. Castellino SM, Ullrich NJ, Whelen MJ, Lange BJ (2014) Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju186

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lange M, Rigal O, Clarisse B, Giffard B, Sevin E, Barillet M, Eustache F, Joly F (2014) Cognitive dysfunctions in elderly cancer patients: a new challenge for oncologists. Cancer Treat Rev 40(6):810–817. https://doi.org/10.1016/j.ctrv.2014.03.003

    Article  PubMed  Google Scholar 

  79. Lenz ER, Suppe F, Gift AG, Pugh LC, Milligan RA (1995) Collaborative development of middle-range nursing theories: toward a theory of unpleasant symptoms. ANS Adv Nurs Sci 17(3):1–13

    Article  CAS  PubMed  Google Scholar 

  80. Lenz ER, Pugh LC, Milligan RA, Gift A, Suppe F (1997) The middle-range theory of unpleasant symptoms: an update. ANS Adv Nurs Sci 19(3):14–27

    Article  CAS  PubMed  Google Scholar 

  81. Myers JS (2009) A comparison of the theory of unpleasant symptoms and the conceptual model of chemotherapy-related changes in cognitive function. Oncol Nurs Forum 36(1):E1–10. https://doi.org/10.1188/09.onf.e1-e10

    Article  PubMed  Google Scholar 

  82. Kreukels BP, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB (2008) Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin Breast Cancer 8(1):80–87. https://doi.org/10.3816/CBC.2008.n.006

    Article  CAS  PubMed  Google Scholar 

  83. Conroy SK, McDonald BC, Smith DJ, Moser LR, West JD, Kamendulis LM, Klaunig JE, Champion VL, Unverzagt FW, Saykin AJ (2013) Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat 137(2):493–502. https://doi.org/10.1007/s10549-012-2385-x

    Article  CAS  PubMed  Google Scholar 

  84. Deprez S, Amant F, Yigit R, Porke K, Verhoeven J, Van den Stock J, Smeets A, Christiaens MR, Leemans A, Van Hecke W, Vandenberghe J, Vandenbulcke M, Sunaert S (2011) Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp 32(3):480–493. https://doi.org/10.1002/hbm.21033

    Article  PubMed  Google Scholar 

  85. Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12(7):703–708. https://doi.org/10.1016/S1470-2045(10)70294-1

    Article  PubMed  Google Scholar 

  86. Moore HC (2014) An overview of chemotherapy-related cognitive dysfunction, or ‘chemobrain’. Oncology (Williston Park) 28(9):797–804 (pii:201376)

    Google Scholar 

  87. Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, van Dam FS (2005) Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat 94(1):53–61. https://doi.org/10.1007/s10549-005-7093-3

    Article  CAS  PubMed  Google Scholar 

  88. Zimmer P, Mierau A, Bloch W, Struder HK, Hulsdunker T, Schenk A, Fiebig L, Baumann FT, Hahn M, Reinart N, Hallek M, Elter T (2015) Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: a first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leuk Lymphoma 56(2):347–352. https://doi.org/10.3109/10428194.2014.915546

    Article  CAS  PubMed  Google Scholar 

  89. Lim I, Joung HY, Yu AR, Shim I, Kim JS (2016) PET evidence of the effect of donepezil on cognitive performance in an animal model of chemobrain. Biomed Res Int 2016:6945415. https://doi.org/10.1155/2016/6945415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Horky LL, Gerbaudo VH, Zaitsev A, Plesniak W, Hainer J, Govindarajulu U, Kikinis R, Dietrich J (2014) Systemic chemotherapy decreases brain glucose metabolism. Ann Clin Transl Neurol 1(10):788–798. https://doi.org/10.1002/acn3.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hurria A, Patel SK, Mortimer J, Luu T, Somlo G, Katheria V, Ramani R, Hansen K, Feng T, Chuang C, Geist CL, Silverman DH (2014) The effect of aromatase inhibition on the cognitive function of older patients with breast cancer. Clin Breast Cancer 14(2):132–140. https://doi.org/10.1016/j.clbc.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  92. Pomykala KL, Ganz PA, Bower JE, Kwan L, Castellon SA, Mallam S, Cheng I, Ahn R, Breen EC, Irwin MR, Silverman DH (2013) The association between pro-inflammatory cytokines, regional cerebral metabolism, and cognitive complaints following adjuvant chemotherapy for breast cancer. Brain Imaging Behav 7(4):511–523. https://doi.org/10.1007/s11682-013-9243-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liedke PE, Reolon GK, Kilpp B, Brunetto AL, Roesler R, Schwartsmann G (2009) Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav 94(2):239–243. https://doi.org/10.1016/j.pbb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  94. Van Calsteren K, Hartmann D, Van Aerschot L, Verbesselt R, Van Bree R, D'Hooge R, Amant F (2009) Vinblastine and doxorubicin administration to pregnant mice affects brain development and behaviour in the offspring. NeuroToxicology 30(4):647–657. https://doi.org/10.1016/j.neuro.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  95. Barry RL, Byun NE, Tantawy MN, Mackey CA, Wilson GH 3rd, Stark AJ, Flom MP, Gee LC, Quarles CC (2018) In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction. Brain Imaging Behav 12(1):87–95. https://doi.org/10.1007/s11682-017-9674-2

    Article  PubMed  Google Scholar 

  96. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60 (pii:0165-0270(84)90007-4)

    Article  CAS  PubMed  Google Scholar 

  97. Philpot RM, Ficken M, Wecker L (2016) Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice. Behav Brain Res 307:165–175. https://doi.org/10.1016/j.bbr.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  98. Sleight A (2016) Coping with cancer-related cognitive dysfunction: a scoping review of the literature. Disabil Rehabil 38(4):400–408. https://doi.org/10.3109/09638288.2015.1038364

    Article  PubMed  Google Scholar 

  99. Ferguson RJ, Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Mott LA (2007) Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology 16(8):772–777. https://doi.org/10.1002/pon.1133

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ferguson RJ, McDonald BC, Rocque MA, Furstenberg CT, Horrigan S, Ahles TA, Saykin AJ (2012) Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. Psychooncology 21(2):176–186. https://doi.org/10.1002/pon.1878

    Article  PubMed  Google Scholar 

  101. Goedendorp MM, Knoop H, Gielissen MF, Verhagen CA, Bleijenberg G (2014) The effects of cognitive behavioral therapy for postcancer fatigue on perceived cognitive disabilities and neuropsychological test performance. J Pain Symptom Manag 47(1):35–44. https://doi.org/10.1016/j.jpainsymman.2013.02.014

    Article  Google Scholar 

  102. Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, Marsiske M, Morris JN, Tennstedt SL, Unverzagt FW, Willis SL (2014) Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc 62(1):16–24. https://doi.org/10.1111/jgs.12607

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kesler S, Hadi Hosseini SM, Heckler C, Janelsins M, Palesh O, Mustian K, Morrow G (2013) Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clin Breast Cancer 13(4):299–306. https://doi.org/10.1016/j.clbc.2013.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wong-Goodrich SJ, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW (2010) Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res 70(22):9329–9338. https://doi.org/10.1158/0008-5472.CAN-10-1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Winocur G, Wojtowicz JM, Huang J, Tannock IF (2014) Physical exercise prevents suppression of hippocampal neurogenesis and reduces cognitive impairment in chemotherapy-treated rats. Psychopharmacology 231(11):2311–2320. https://doi.org/10.1007/s00213-013-3394-0

    Article  CAS  PubMed  Google Scholar 

  106. Mustian KMJMC, Peppone LJ et al (2015) EXCAP exercise effects on cognitive impairment and inflammation: a URCC NCORP RCT in 479 cancer patients. J Clin Oncol 33(15 suppl):9504. https://doi.org/10.1200/jco.2015.33.15_suppl.9504

    Article  Google Scholar 

  107. Crowgey T, Peters KB, Hornsby WE, Lane A, McSherry F, Herndon JE 2nd, West MJ, Williams CL, Jones LW (2014) Relationship between exercise behavior, cardiorespiratory fitness, and cognitive function in early breast cancer patients treated with doxorubicin-containing chemotherapy: a pilot study. Appl Physiol Nutr Metab 39(6):724–729. https://doi.org/10.1139/apnm-2013-0380

    Article  CAS  PubMed  Google Scholar 

  108. Kohli S, Fisher SG, Tra Y, Adams MJ, Mapstone ME, Wesnes KA, Roscoe JA, Morrow GR (2009) The effect of modafinil on cognitive function in breast cancer survivors. Cancer 115(12):2605–2616. https://doi.org/10.1002/cncr.24287

    Article  CAS  PubMed  Google Scholar 

  109. Lundorff LE, Jonsson BH, Sjogren P (2009) Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomised, cross-over trial. Palliat Med 23(8):731–738. https://doi.org/10.1177/0269216309106872

    Article  CAS  PubMed  Google Scholar 

  110. Blackhall L, Petroni G, Shu J, Baum L, Farace E (2009) A pilot study evaluating the safety and efficacy of modafinal for cancer-related fatigue. J Palliat Med 12(5):433–439. https://doi.org/10.1089/jpm.2008.0230

    Article  PubMed  Google Scholar 

  111. Mar Fan HG, Clemons M, Xu W, Chemerynsky I, Breunis H, Braganza S, Tannock IF (2008) A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer 16(6):577–583. https://doi.org/10.1007/s00520-007-0341-9

    Article  PubMed  Google Scholar 

  112. Thompson SJ, Leigh L, Christensen R, Xiong X, Kun LE, Heideman RL, Reddick WE, Gajjar A, Merchant T, Pui CH, Hudson MM, Mulhern RK (2001) Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol 19(6):1802–1808. https://doi.org/10.1200/JCO.2001.19.6.1802

    Article  CAS  PubMed  Google Scholar 

  113. Winocur G, Binns MA, Tannock I (2011) Donepezil reduces cognitive impairment associated with anti-cancer drugs in a mouse model. Neuropharmacology 61(8):1222–1228. https://doi.org/10.1016/j.neuropharm.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  114. Lawrence JA, Griffin L, Balcueva EP, Groteluschen DL, Samuel TA, Lesser GJ, Naughton MJ, Case LD, Shaw EG, Rapp SR (2016) A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy. J Cancer Surviv 10(1):176–184. https://doi.org/10.1007/s11764-015-0463-x

    Article  CAS  PubMed  Google Scholar 

  115. Mostert JP, Koch MW, Heerings M, Heersema DJ, De Keyser J (2008) Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther 14(2):153–164. https://doi.org/10.1111/j.1527-3458.2008.00040.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mustafa S, Walker A, Bennett G, Wigmore PM (2008) 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28(2):323–330. https://doi.org/10.1111/j.1460-9568.2008.06325.x

    Article  PubMed  Google Scholar 

  117. ElBeltagy M, Mustafa S, Umka J, Lyons L, Salman A, Chur-yoe GT, Bhalla N, Bennett G, Wigmore PM (2010) Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res 208(1):112–117. https://doi.org/10.1016/j.bbr.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  118. Lyons L, ElBeltagy M, Bennett G, Wigmore P (2012) Fluoxetine counteracts the cognitive and cellular effects of 5-fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS ONE 7(1):e30010. https://doi.org/10.1371/journal.pone.0030010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fardell JE, Vardy J, Johnston IN, Winocur G (2011) Chemotherapy and cognitive impairment: treatment options. Clin Pharmacol Ther 90(3):366–376. https://doi.org/10.1038/clpt.2011.112

    Article  CAS  PubMed  Google Scholar 

  120. Konat GW, Kraszpulski M, James I, Zhang HT, Abraham J (2008) Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab Brain Dis 23(3):325–333. https://doi.org/10.1007/s11011-008-9100-y

    Article  CAS  PubMed  Google Scholar 

  121. Ramalingayya GV, Sonawane V, Cheruku SP, Kishore A, Nayak PG, Kumar N, Shenoy RS, Nandakumar K (2017) Insulin protects against brain oxidative stress with an apparent effect on episodic memory in doxorubicin-induced cognitive dysfunction in Wistar rats. J Environ Pathol Toxicol Oncol 36(2):121–130. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017017087

    Article  PubMed  Google Scholar 

  122. Ramalingayya GV, Cheruku SP, Nayak PG, Kishore A, Shenoy R, Rao CM, Krishnadas N (2017) Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des Dev Ther 11:1011–1026. https://doi.org/10.2147/DDDT.S103511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Amany El-Shahawy Abdel-Maged, National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt, for her contribution to gathering data about positron emission tomography (PET) for this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read the journal’s authorship statement and agree to it. In accordance with your journal’s policy, we confirm that the material contained in the manuscript is original and has not been published and is not being submitted elsewhere. The authors qualify for authorship and have no financial or personal relationships that might lead to conflict of interest. This manuscript is being submitted online in accordance with your policies for this type of submission.

Corresponding author

Correspondence to Samar S. Azab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Agamy, S., Abdel-Aziz, A., Esmat, A. et al. Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol 84, 1–14 (2019). https://doi.org/10.1007/s00280-019-03827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03827-0

Keywords

Navigation