Skip to main content

Advertisement

Log in

Expression of vascular endothelial growth factor receptor 2 and clinical response to lenvatinib in patients with anaplastic thyroid cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis plays a crucial role in the development, growth, and metastasis of carcinomas, and studies have reported conflicting evidence regarding the VEGFR expression in anaplastic thyroid cancer. We investigated the expression of VEGFR2 in patients with anaplastic thyroid cancer (ATC) and analyzed the clinical response to the VEGFR inhibitor lenvatinib.

Methods

This cross-sectional study included primary tumor samples obtained from 12 patients with ATC, including 5 males and 7 females (age range 63–89 years) who underwent surgery or core needle biopsy for a thyroid tumor in the Department of Breast and Endocrine Surgery at Kanagawa Cancer Center in Kanagawa, Japan. VEGFR2 protein expression in the ATC samples was analyzed by immunohistochemistry in all patients, and the therapeutic effect of lenvatinib was evaluated in seven patients who underwent tissue biopsy and lesion evaluation.

Results

VEGFR expression was not detected in any of the samples from the 12 patients. Four of the 12 patients treated with lenvatinib had partial response, the three patients achieved stable disease, and the five patients were not examined.

Conclusions

There was no correlation between the expression of VEGFR2 in tumor tissue and the clinical response to lenvatinib among patients with ATC. Further studies are necessary to elucidate the mechanism underlying the response to lenvatinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  PubMed  CAS  Google Scholar 

  3. Klein M, Catargi B (2007) VEGF in physiological process and thyroid disease. Ann Endocrinol (Paris) 68:438–448

    Article  CAS  Google Scholar 

  4. Petrova TV, Makinen T, Alitalo K (1999) Signaling via vascular endothelial growth factor receptors. Exp Cell Res 253:117–130

    Article  PubMed  CAS  Google Scholar 

  5. Fournier E, Birnbaum D, Borg JP (1997) Receptors for factors of the VEGF (Vascular Endothelial Growth Family). Bull Cancer 84:397–405

    PubMed  CAS  Google Scholar 

  6. Parast CV, Mroczkowski B, Pinko C, Misialek S, Khambatta G, Appelt K (1998) Characterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR2 TK), a key enzyme in angiogenesis. Biochemistry 37:16788–16801

    Article  PubMed  CAS  Google Scholar 

  7. Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T, Sowa M (1996) Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77:858–863

    Article  PubMed  CAS  Google Scholar 

  8. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S (1997) Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Association with angiogenesis and tumor progression. Cancer 79:206–213

    Article  PubMed  CAS  Google Scholar 

  9. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki H, Tominaga T (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139–147

    Article  PubMed  CAS  Google Scholar 

  10. Yamamoto S, Konishi I, Mandai M, Kuroda H, Komatsu T, Nanbu K, Sakahara H, Mori T (1997) Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 76:1221–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Salven P, Teerenhovi L, Joensuu H (1997) A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood 90:3167–3172

    PubMed  CAS  Google Scholar 

  12. Erdem H, Gündogdu C, Sipal S (2011) Correlation of E-cadherin, VEGF, COX-2 expression to prognostic parameters in papillary thyroid carcinoma. Exp Mol Pathol 90:312–317

    Article  PubMed  CAS  Google Scholar 

  13. Yu XM, Lo CY, Lam AK, Leung P, Luk JM (2008) Serum vascular endothelial growth factor C correlates with lymph node metastases and high-risk tumor profiles in papillary thyroid carcinoma. Ann Surg 247:483–489

    Article  PubMed  Google Scholar 

  14. Yu XM, Lo CY, Lam AK, Lang BH, Leung P, Luk JM (2008) The potential clinical relevance of serum vascular endothelial growth factor (VEGF) and VEGF-C in recurrent papillary thyroid carcinoma. Surgery 144:934–940 (discussion 940–941)

    Article  PubMed  Google Scholar 

  15. Sugitani I, Miyauchi A, Sugino K, Okamoto T, Yoshida A, Suzuki S (2012) Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC Research Consortium of Japan cohort study of 677 patients. World J Surg 36:1247–1254

    Article  PubMed  Google Scholar 

  16. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D (2018) Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer Mar 25(3):R153–R161

    Article  Google Scholar 

  17. Sugitani I, Kasai N, Fujimoto Y, Yanagisawa A (2001) Prognostic factors and therapeutic strategy for anaplastic carcinoma of the thyroid. World J Surg 25:617–622

    Article  PubMed  CAS  Google Scholar 

  18. Fourati A, El Amine O, Ben Ayoub W, Cherni I, Goucha A, El May MV, Gamoudi A, El May A (2017) Expression profile of biomarkers altered in papillary and anaplastic thyroid carcinoma: contribution of Tunisian patients. Bull Cancer 104:433–441

    Article  PubMed  Google Scholar 

  19. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu J, Sherman SI (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372:621–630

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi S, Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki R, Toda K, Enokida T, Minami H, Imamura Y, Sasaki T, Suzuki T, Fujino K, Dutcus C (2014) Phase II study of lenvatinib (LEN), a multi-targeted tyrosine kinase inhibitor, in patients (PTS) with all histologic subtypes of advanced thyroid cancer (differentiated, medullary and anaplastic). Ann Oncol 25(Suppl 4):iv340–iv356

    Google Scholar 

  21. Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F, Fedele M, Ippolito P, Chiappetta G, Botti G (1995) Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 11:1569–1579

    PubMed  CAS  Google Scholar 

  22. Hung CJ, Ginzinger DG, Zarnegar R, Kanauchi H, Wong MG, Kebebew E, Clark OH, Duh QY (2003) Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors. J Clin Endocrinol Metab 88:3694–3699

    Article  PubMed  CAS  Google Scholar 

  23. Huang SM, Lee JC, Wu TJ, Chow NH (2001) Clinical relevance of vascular endothelial growth factor for thyroid neoplasms. World J Surg 25:302–306

    Article  PubMed  CAS  Google Scholar 

  24. de Araujo-Filho VJ, Alves VA, de Castro IV, Lourenço SV, Cernea CR, Brandão LG, Ferraz AR (2009) Vascular endothelial growth factor expression in invasive papillary thyroid carcinoma. Thyroid 19:1233–1237

    Article  PubMed  CAS  Google Scholar 

  25. Wiseman SM, Griffith OL, Deen S, Rajput A, Masoudi H, Gilks B, Goldstein L, Gown A, Jones SJ (2007) Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 142:717–727 (discussion 727–729)

    Article  PubMed  CAS  Google Scholar 

  26. Pinto MP, Sotomayor P, Carrasco-Avino G, Corvalan AH, Owen GI (2016) Escaping antiangiogenic therapy: strategies employed by cancer cells. Int J Mol Sci 17:E1489

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto Y, Matsui J, Matsushima T, Obaishi H, Miyazaki K, Nakamura K, Tohyama O, Semba T, Yamaguchi A, Hoshi SS, Mimura F, Haneda T, Fukuda Y, Kamata JI, Takahashi K, Matsukura M, Wakabayashi T, Asada M, Nomoto KI, Watanabe T, Dezso Z, Yoshimatsu K, Funahashi Y, Tsuruoka A (2014) Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 6:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Okamoto K, Ikemori-Kawada M, Jestel A, von König K, Funahashi Y, Matsushima T, Tsuruoka A, Inoue A, Matsui J (2014) Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med Chem Lett 6:89–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. St Bernard R, Zheng L, Liu W, Winer D, Asa SL, Ezzat S (2005) Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 146:1145–1153

    Article  PubMed  CAS  Google Scholar 

  30. Turkington RC, Longley DB, Allen WL, Stevenson L, McLaughlin K, Dunne PD, Blayney JK, Salto-Tellez M, Van Schaeybroeck S, Johnston PG (2014) Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death Dis 5:e1046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181:1115–1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susan Furness, PhD, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This study did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Yamazaki.

Ethics declarations

Conflict of interest

The authors declare that no competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, H., Yokose, T., Hayashi, H. et al. Expression of vascular endothelial growth factor receptor 2 and clinical response to lenvatinib in patients with anaplastic thyroid cancer. Cancer Chemother Pharmacol 82, 649–654 (2018). https://doi.org/10.1007/s00280-018-3657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3657-x

Keywords

Navigation