Skip to main content

Advertisement

Log in

Interactions of lean soft-tissue and chemotherapy toxicities in patients receiving anti-cancer treatments

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Use of cross-sectional imaging to identify whole-body lean soft-tissue mass has recently emerged as an attractive prognostic factor for chemotherapy toxicities. Beyond that, there is increasing interest in use of lean soft-tissue mass as a more accurate method for dosing chemotherapy, as compared to body surface area. In this review, we summarize the current evidence that supports interactions between skeletal muscle and chemotherapy, the role of lean soft tissue in predicting chemotherapy toxicities and potential use of an alternate method of chemotherapeutic dosing, all based on quantification of skeletal muscle mass by computed tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Du Bois D, Du Bois E (1916) A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 17:863–871

    Article  CAS  Google Scholar 

  2. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098

    PubMed  CAS  Google Scholar 

  3. Gehan E, George S (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235

    PubMed  CAS  Google Scholar 

  4. Heaf JG (2007) The origin of the 1 × 73-m2 body surface area normalization: problems and implications. Clin Physiol Funct Imaging 27(3):135–137. https://doi.org/10.1111/j.1475-097X.2006.00718.x

    Article  PubMed  Google Scholar 

  5. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97(6):2333–2338. https://doi.org/10.1152/japplphysiol.00744.2004

    Article  PubMed  Google Scholar 

  6. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006

    Article  PubMed  Google Scholar 

  7. Antoun S, Birdsell L, Sawyer MB, Venner P, Escudier B, Baracos VE (2010) Association of skeletal muscle wasting with treatment with sorafenib in patients with advanced renal cell carcinoma: results from a placebo-controlled study. J Clin Oncol 28(6):1054–1060. https://doi.org/10.1200/JCO.2009.24.9730

    Article  PubMed  CAS  Google Scholar 

  8. Massicotte MH, Borget I, Broutin S, Baracos VE, Leboulleux S, Baudin E, Paci A, Deroussent A, Schlumberger M, Antoun S (2013) Body composition variation and impact of low skeletal muscle mass in patients with advanced medullary thyroid carcinoma treated with vandetanib: results from a placebo-controlled study. J Clin Endocrinol Metab 98(6):2401–2408. https://doi.org/10.1210/jc.2013-1115

    Article  PubMed  CAS  Google Scholar 

  9. Prado CM, Bekaii-Saab T, Doyle LA, Shrestha S, Ghosh S, Baracos VE, Sawyer MB (2012) Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer 106(10):1583–1586. https://doi.org/10.1038/bjc.2012.144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Moryoussef F, Dhooge M, Volet J, Barbe C, Brezault C, Hoeffel C, Coriat R, Bouche O (2015) Reversible sarcopenia in patients with gastrointestinal stromal tumor treated with imatinib. J Cachexia Sarcopenia Muscle 6(4):343–350. https://doi.org/10.1002/jcsm.12047

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yip C, Dinkel C, Mahajan A, Siddique M, Cook GJ, Goh V (2015) Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging 6(4):489–497. https://doi.org/10.1007/s13244-015-0414-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Awad S, Tan BH, Cui H, Bhalla A, Fearon KC, Parsons SL, Catton JA, Lobo DN (2012) Marked changes in body composition following neoadjuvant chemotherapy for oesophagogastric cancer. Clin Nutr 31(1):74–77. https://doi.org/10.1016/j.clnu.2011.08.008

    Article  PubMed  Google Scholar 

  13. Paireder M, Asari R, Kristo I, Rieder E, Tamandl D, Ba-Ssalamah A, Schoppmann SF (2017) Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur J Surg Oncol 43(2):478–484. https://doi.org/10.1016/j.ejso.2016.11.015

    Article  PubMed  CAS  Google Scholar 

  14. Palmela C, Velho S, Agostinho L, Branco F, Santos M, Santos MP, Oliveira MH, Strecht J, Maio R, Cravo M, Baracos VE (2017) Body composition as a prognostic factor of neoadjuvant chemotherapy toxicity and outcome in patients with locally advanced gastric cancer. J Gastric Cancer 17(1):74–87. https://doi.org/10.5230/jgc.2017.17.e8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Daly LE, Ni Bhuachalla EB, Power DG, Cushen SJ, James K, Ryan AM (2018) Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12267

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rier HN, Jager A, Sleijfer S, van Rosmalen J, Kock MC, Levin MD (2017) Low muscle attenuation is a prognostic factor for survival in metastatic breast cancer patients treated with first line palliative chemotherapy. Breast 31:9–15. https://doi.org/10.1016/j.breast.2016.10.014

    Article  PubMed  Google Scholar 

  17. Benjamin AJ, Buschmann MM, Zhang SQ, Wroblewski K, Kindler HL, Roggin KK, Dale W (2018) The impact of changes in radiographic sarcopenia on overall survival in older adults undergoing different treatment pathways for pancreatic cancer. J Geriatr Oncol. https://doi.org/10.1016/j.jgo.2018.03.002

    Article  PubMed  Google Scholar 

  18. Nattenmuller J, Wochner R, Muley T, Steins M, Hummler S, Teucher B, Wiskemann J, Kauczor HU, Wielputz MO, Heussel CP (2017) Prognostic impact of CT-quantified muscle and fat distribution before and after first-line-chemotherapy in lung cancer patients. PLoS One 12(1):e0169136. https://doi.org/10.1371/journal.pone.0169136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Goncalves MD, Taylor S, Halpenny DF, Schwitzer E, Gandelman S, Jackson J, Lukose A, Plodkowski AJ, Tan KS, Dunphy M, Jones LW, Downey RJ (2018) Imaging skeletal muscle volume, density, and FDG uptake before and after induction therapy for non-small cell lung cancer. Clin Radiol. https://doi.org/10.1016/j.crad.2017.12.004

    Article  PubMed  Google Scholar 

  20. Xiao DY, Luo S, O’Brian K, Sanfilippo KM, Ganti A, Riedell P, Lynch RC, Liu W, Kahl BS, Cashen AF, Fehniger TA, Carson KR (2016) Longitudinal body composition changes in diffuse large B-cell lymphoma survivors: a retrospective cohort study of united states veterans. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw145

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T (2016) Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle 7(4):458–466. https://doi.org/10.1002/jcsm.12107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Daly LE, Power DG, O’Reilly A, Donnellan P, Cushen SJ, O’Sullivan K, Twomey M, Woodlock DP, Redmond HP, Ryan AM (2017) The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br J Cancer 116(3):310–317. https://doi.org/10.1038/bjc.2016.431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gyawali B, Shimokata T, Honda K, Kondoh C, Hayashi N, Yoshino Y, Sassa N, Nakano Y, Gotoh M, Ando Y (2016) Muscle wasting associated with long-term use of mTOR inhibitors. Mol Clin Oncol 5:641–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pezaro C, Mukherji D, Tunariu N, Cassidy AM, Omlin A, Bianchini D, Seed G, Reid AH, Olmos D, de Bono JS, Attard G (2013) Sarcopenia and change in body composition following maximal androgen suppression with abiraterone in men with castration-resistant prostate cancer. Br J Cancer 109(2):325–331. https://doi.org/10.1038/bjc.2013.340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Choi Y, Oh DY, Kim TY, Lee KH, Han SW, Im SA, Kim TY, Bang YJ (2015) Skeletal muscle depletion predicts the prognosis of patients with advanced pancreatic cancer undergoing palliative chemotherapy, independent of body mass index. PLoS One 10(10):e0139749. https://doi.org/10.1371/journal.pone.0139749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, Mackey JR, Koski S, Pituskin E, Sawyer MB (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15(8):2920–2926. https://doi.org/10.1158/1078-0432.CCR-08-2242

    Article  PubMed  CAS  Google Scholar 

  27. Huillard O, Mir O, Peyromaure M, Tlemsani C, Giroux J, Boudou-Rouquette P, Ropert S, Delongchamps NB, Zerbib M, Goldwasser F (2013) Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br J Cancer 108(5):1034–1041. https://doi.org/10.1038/bjc.2013.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Barret M, Antoun S, Dalban C, Malka D, Mansourbakht T, Zaanan A, Latko E, Taieb J (2014) Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer. Nutr Cancer 66(4):583–589. https://doi.org/10.1080/01635581.2014.894103

    Article  PubMed  CAS  Google Scholar 

  29. Jung HW, Kim JW, Kim JY, Kim SW, Yang HK, Lee JW, Lee KW, Kim DW, Kang SB, Kim KI, Kim CH, Kim JH (2015) Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Support Care Cancer 23(3):687–694. https://doi.org/10.1007/s00520-014-2418-6

    Article  PubMed  Google Scholar 

  30. Tan BH, Brammer K, Randhawa N, Welch NT, Parsons SL, James EJ, Catton JA (2015) Sarcopenia is associated with toxicity in patients undergoing neo-adjuvant chemotherapy for oesophago-gastric cancer. Eur J Surg Oncol 41(3):333–338. https://doi.org/10.1016/j.ejso.2014.11.040

    Article  PubMed  CAS  Google Scholar 

  31. Chemama S, Bayar MA, Lanoy E, Ammari S, Stoclin A, Goere D, Elias D, Raynard B, Antoun S (2016) Sarcopenia is associated with chemotherapy toxicity in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol 23(12):3891–3898. https://doi.org/10.1245/s10434-016-5360-7

    Article  PubMed  Google Scholar 

  32. Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF, Benbow JM, Muss HB (2017) Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. Clin Cancer Res 23(3):658–665. https://doi.org/10.1158/1078-0432.CCR-16-0940

    Article  PubMed  CAS  Google Scholar 

  33. Cespedes Feliciano EM, Lee VS, Prado CM, Meyerhardt JA, Alexeeff S, Kroenke CH, Xiao J, Castillo AL, Caan BJ (2017) Muscle mass at the time of diagnosis of nonmetastatic colon cancer and early discontinuation of chemotherapy, delays, and dose reductions on adjuvant FOLFOX: the C-SCANS study. Cancer 123(24):4868–4877. https://doi.org/10.1002/cncr.30950

    Article  PubMed  CAS  Google Scholar 

  34. Williams GR, Deal AM, Shachar SS, Walko CM, Patel JN, O’Neil B, McLeod HL, Weinberg MS, Choi SK, Muss HB, Sanoff HK (2018) The impact of skeletal muscle on the pharmacokinetics and toxicity of 5-fluorouracil in colorectal cancer. Cancer Chemother Pharmacol 81(2):413–417. https://doi.org/10.1007/s00280-017-3487-2

    Article  PubMed  CAS  Google Scholar 

  35. Prado CM, Lima IS, Baracos VE, Bies RR, McCargar LJ, Reiman T, Mackey JR, Kuzma M, Damaraju VL, Sawyer MB (2011) An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother Pharmacol 67(1):93–101. https://doi.org/10.1007/s00280-010-1288-y

    Article  PubMed  CAS  Google Scholar 

  36. Shachar SS, Deal AM, Weinberg M, Williams GR, Nyrop KA, Popuri K, Choi SK, Muss HB (2017) Body composition as a predictor of toxicity in patients receiving anthracycline and taxane-based chemotherapy for early-stage breast cancer. Clin Cancer Res 23(14):3537–3543. https://doi.org/10.1158/1078-0432.CCR-16-2266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9(7):629–635. https://doi.org/10.1016/s1470-2045(08)70153-0

    Article  PubMed  Google Scholar 

  38. Ali R, Baracos VE, Sawyer MB, Bianchi L, Roberts S, Assenat E, Mollevi C, Senesse P (2016) Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Med 5(4):607–616. https://doi.org/10.1002/cam4.621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cushen SJ, Power DG, Teo MY, MacEneaney P, Maher MM, McDermott R, O’Sullivan K, Ryan AM (2017) Body composition by computed tomography as a predictor of toxicity in patients with renal cell carcinoma treated with sunitinib. Am J Clin Oncol 40:47–52. https://doi.org/10.1097/COC.0000000000000061

    Article  PubMed  CAS  Google Scholar 

  40. Mir O, Coriat R, Blanchet B, Durand JP, Boudou-Rouquette P, Michels J, Ropert S, Vidal M, Pol S, Chaussade S, Goldwasser F (2012) Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One 7(5):e37563. https://doi.org/10.1371/journal.pone.0037563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Anandavadivelan P, Brismar TB, Nilsson M, Johar AM, Martin L (2016) Sarcopenic obesity: a probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients. Clin Nutr 35(3):724–730. https://doi.org/10.1016/j.clnu.2015.05.011

    Article  PubMed  CAS  Google Scholar 

  42. Cushen SJ, Power DG, Murphy KP, McDermott R, Griffin BT, Lim M, Daly L, MacEneaney P, K OS, Prado CM, Ryan AM (2016) Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin Nutr ESPEN 13:e39–e45. https://doi.org/10.1016/j.clnesp.2016.04.001

    Article  PubMed  Google Scholar 

  43. Cousin S, Hollebecque A, Koscielny S, Mir O, Varga A, Baracos VE, Soria JC, Antoun S (2014) Low skeletal muscle is associated with toxicity in patients included in phase I trials. Invest New Drugs 32(2):382–387. https://doi.org/10.1007/s10637-013-0053-6

    Article  PubMed  CAS  Google Scholar 

  44. Prado CM, Baracos VE, Xiao J, Birdsell L, Stuyckens K, Park YC, Parekh T, Sawyer MB (2014) The association between body composition and toxicities from the combination of Doxil and trabectedin in patients with advanced relapsed ovarian cancer. Appl Physiol Nutr Metab 39(6):693–698. https://doi.org/10.1139/apnm-2013-0403

    Article  PubMed  CAS  Google Scholar 

  45. Parsons HA, Tsimberidou AM, Pontikos M, Fu S, Hong D, Wen S, Baracos VE, Kurzrock R (2012) Evaluation of the clinical relevance of body composition parameters in patients with cancer metastatic to the liver treated with hepatic arterial infusion chemotherapy. Nutr Cancer 64(2):206–217. https://doi.org/10.1080/01635581.2012.638433

    Article  PubMed  CAS  Google Scholar 

  46. Srdic D, Plestina S, Sverko-Peternac A, Nikolac N, Simundic AM, Samarzija M (2016) Cancer cachexia, sarcopenia and biochemical markers in patients with advanced non-small cell lung cancer-chemotherapy toxicity and prognostic value. Support Care Cancer 24(11):4495–4502. https://doi.org/10.1007/s00520-016-3287-y

    Article  PubMed  Google Scholar 

  47. Gouerant S, Leheurteur M, Chaker M, Modezelewski R, Rigal O, Veyret C, Lauridant G, Clatot F (2013) A higher body mass index and fat mass are factors predictive of docetaxel dose intensity. Anticancer Res 33:5655–5662

    PubMed  CAS  Google Scholar 

  48. Prado CM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, Butts CA, Scarfe AG, Sawyer MB (2007) Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res 13(11):3264–3268. https://doi.org/10.1158/1078-0432.CCR-06-3067

    Article  PubMed  CAS  Google Scholar 

  49. Sjoblom B, Gronberg BH, Benth JS, Baracos VE, Flotten O, Hjermstad MJ, Aass N, Jordhoy M (2015) Low muscle mass is associated with chemotherapy-induced haematological toxicity in advanced non-small cell lung cancer. Lung Cancer 90(1):85–91. https://doi.org/10.1016/j.lungcan.2015.07.001

    Article  PubMed  Google Scholar 

  50. Arrieta O, De la Torre-Vallejo M, Lopez-Macias D, Orta D, Turcott J, Macedo-Perez EO, Sanchez-Lara K, Ramirez-Tirado LA, Baracos VE (2015) Nutritional status, body surface, and low lean body mass/body mass index are related to dose reduction and severe gastrointestinal toxicity induced by afatinib in patients with non-small cell lung cancer. Oncologist 20(8):967–974. https://doi.org/10.1634/theoncologist.2015-0058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sjoblom B, Benth JS, Gronberg BH, Baracos VE, Sawyer MB, Flotten O, Hjermstad MJ, Aass N, Jordhoy M (2016) Drug dose per kilogram lean body mass predicts hematologic toxicity from carboplatin-doublet chemotherapy in advanced non-small-cell lung cancer. Clin Lung Cancer. https://doi.org/10.1016/j.cllc.2016.09.008

    Article  PubMed  Google Scholar 

  52. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB, Baracos VE (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12):1539–1547. https://doi.org/10.1200/JCO.2012.45.2722

    Article  PubMed  Google Scholar 

  53. Clark RV, Walker AC, Miller RR, O’Connor-Semmes RL, Ravussin E, Cefalu WT (2018) Creatine (methyl-d3) dilution in urine for estimation of total body skeletal muscle mass: accuracy and variability vs. MRI and DXA. J Appl Physiol 124(1):1–9. https://doi.org/10.1152/japplphysiol.00455.2016

    Article  PubMed  Google Scholar 

  54. Rutten IJG, Ubachs J, Kruitwagen R, Beets-Tan RGH, Olde Damink SWM, Van Gorp T (2017) Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J Cachexia Sarcopenia Muscle 8(4):630–638. https://doi.org/10.1002/jcsm.12180

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baracos V (2017) Psoas as a sentinel muscle for sarcopenia: a flawed premise. J Cachexia Sarcopenia Muscle 8:527–528

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bodine SC, Stitt TN, Gonzales M, Kline WO, Stover GL, Bauerlain R, Zlotchenko E, Scrimgeour A, Lawrence JC, Yancopoulos DJG GD (2001) Akt.mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  57. Edinger AL, Thompson CB (2010) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288

    Article  CAS  Google Scholar 

  58. Crosby V, D’Souza C, Bristow C, Proffitt A, Hussain A, Potter V, Hennig I, O’Connor R, Baracos V, Wilcock A (2017) Can body composition be used to optimize the dose of platinum chemotherapy in lung cancer? A feasibility study. Support Care Cancer 25(4):1257–1261. https://doi.org/10.1007/s00520-016-3518-2

    Article  PubMed  Google Scholar 

  59. Iannessi A, Beaumont H, Hebert C, Dittlot C, Falewee MN (2018) Computer tomography-based body surface area evaluation for drug dosage: Quantitative radiology versus anthropomorphic evaluation. PLoS One 13(2):e0192124. https://doi.org/10.1371/journal.pone.0192124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Estate of Pamela Miles

Funding

Donation from the Estate of Pamela Miles to the Alberta Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica J. Hopkins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal participant rights

This research did not involve human subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, J.J., Sawyer, M.B. Interactions of lean soft-tissue and chemotherapy toxicities in patients receiving anti-cancer treatments. Cancer Chemother Pharmacol 82, 1–29 (2018). https://doi.org/10.1007/s00280-018-3614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3614-8

Keywords

Navigation