Skip to main content

Advertisement

Log in

Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

This study quantified the impact of drug pathway-associated genetic variants on the pharmacokinetics (PK) of gemcitabine and cisplatin in patients with advanced non-small-cell lung cancer (NSCLC).

Methods

Thirty-seven patients with advanced NSCLC were sampled for plasma concentrations of gemcitabine, difluoro-deoxy uridine (dFdU), intracellular gemcitabine triphosphates (dFdCTP), and unbound platinum concentrations after gemcitabine 1,250 mg/m2 i.v. followed by cisplatin 75 mg/m2. We analyzed 13 germline single nucleotide polymorphisms and one deletion—glutathione S-transferase (GST) M1—within six drug pathway-associated genes (GSTM1, GSTP1, cytidine deaminase (CDA), solute carrier (SLC) 28A1, SLC28A2, and deoxycytidine kinase). PK models were fitted to the data using nonlinear mixed-effects modeling, and genetic data were tested on drug PK and hematological toxicity.

Results

Patients carrying the nonsynonymous CDA SNP 79A >C (CDA*2) had a 21% lower gemcitabine clearance as compared to wild-type patients (outcomes and complications.0.0009), but the risk for chemotherapy-associated neutropenia (61% vs. 32%, P = 0.07) and severe neutropenia (17% vs. 5%, P = 0.26) was not significantly higher. Other gene polymorphisms were not associated with drug PK parameters or hematological toxicity. The known functional mutant variant CDA*3 was not found in any of the patients.

Conclusions

Although the mutant CDA*2 allele results in an increased exposure to gemcitabine in Caucasian patients, this study gives no definite conclusion on the clinical relevance of this finding. Further studies should look into the relationship between CDA genotypes, plasmatic CDA activity, and clinical outcome in patients receiving gemcitabine-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498

    PubMed  CAS  Google Scholar 

  2. Beal SLS (1998) NONMEM. University of California at San Francisco, Francisco

    Google Scholar 

  3. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    PubMed  CAS  Google Scholar 

  4. Brouwers EE, Huitema AD, Beijnen JH, Schellens JH (2008) Long-term platinum retention after treatment with cisplatin and oxaliplatin. BMC Clin Pharmacol 8:7

    Article  PubMed  Google Scholar 

  5. Ciccolini J, Dahan L, Andre N, Evrard A, Duluc M, Blesius A, Yang C, Giacometti S, Brunet C, Raynal C, Ortiz A, Frances N, Iliadis A, Duffaud F, Seitz JF, Mercier C (2010) Cytidine deaminase residual activity in serum is a predictive marker of early severe toxicities in adults after gemcitabine-based chemotherapies. J Clin Oncol 28:160–165

    Article  PubMed  CAS  Google Scholar 

  6. Costanzi S, Vincenzetti S, Vita A, Lambertucci C, Taffi S, Volpini R, Vittori S, Cristalli G (2003) Human cytidine deaminase: understanding the catalytic mechanism. Nucleosides Nucleotides Nucleic Acids 22:1539–1543

    Article  PubMed  CAS  Google Scholar 

  7. Friberg LE, Freijs A, Sandstrom M, Karlsson MO (2000) Semiphysiological model for the time course of leukocytes after varying schedules of 5-fluorouracil in rats. J Pharmacol Exp Ther 295:734–740

    PubMed  CAS  Google Scholar 

  8. Fukunaga AK, Marsh S, Murry DJ, Hurley TD, McLeod HL (2004) Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway. Pharmacogenomics J 4:307–314

    Article  PubMed  CAS  Google Scholar 

  9. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, Ames MM, Weinshilboum RM (2006) Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 12:1794–1803

    Article  PubMed  CAS  Google Scholar 

  10. Jansen RS, Rosing H, Schellens JH, Beijnen JH (2009) Simultaneous quantification of 2′, 2′-difluorodeoxycytidine and 2′,2′-difluorodeoxyuridine nucleosides and nucleotides in white blood cells using porous graphitic carbon chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom 23:3040–3050

    Article  PubMed  CAS  Google Scholar 

  11. Jiang X, Galettis P, Links M, Mitchell PL, McLachlan AJ (2008) Population pharmacokinetics of gemcitabine and its metabolite in patients with cancer: effect of oxaliplatin and infusion rate. Br J Clin Pharmacol 65:326–333

    Article  PubMed  CAS  Google Scholar 

  12. Joerger M, Bosch TM, Doodeman VD, Beijnen JH, Smits PH, Schellens JH (2006) Novel deoxycytidine kinase gene polymorphisms: a population screening study in Caucasian healthy volunteers. Eur J Clin Pharmacol 62:681–684

    Article  PubMed  CAS  Google Scholar 

  13. Le Chevalier T, Scagliotti G, Natale R, Danson S, Rosell R, Stahel R, Thomas P, Rudd RM, Vansteenkiste J, Thatcher N, Manegold C, Pujol JL, van Zandwijk N, Gridelli C, van Meerbeeck JP, Crino L, Brown A, Fitzgerald P, Aristides M, Schiller JH (2005) Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: a meta-analysis of survival outcomes. Lung Cancer 47:69–80

    Article  PubMed  CAS  Google Scholar 

  14. Maring JG, Wachters FM, Slijfer M, Maurer JM, Boezen HM, Uges DR, de Vries EG, Groen HJ (2010) Pharmacokinetics of gemcitabine in non-small-cell lung cancer patients: impact of the 79A > C cytidine deaminase polymorphism. Eur J Clin Pharmacol 66:611–617

    Article  PubMed  CAS  Google Scholar 

  15. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T (2006) Cellular pharmacology of gemcitabine. Ann Oncol 17(Suppl 5):v7–v12

    Article  PubMed  Google Scholar 

  16. Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, Bai XT, Gao XD, Hu J, Jin W, Huang W, Chen Z, Chen SJ (2004) Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics 14:759–768

    Article  PubMed  CAS  Google Scholar 

  17. Soo RA, Wang LZ, Ng SS, Chong PY, Yong WP, Lee SC, Liu JJ, Choo TB, Tham LS, Lee HS, Goh BC, Soong R (2009) Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer 63:121–127

    Article  PubMed  Google Scholar 

  18. Sugiyama E, Kaniwa N, Kim SR, Hasegawa R, Saito Y, Ueno H, Okusaka T, Ikeda M, Morizane C, Kondo S, Yamamoto N, Tamura T, Furuse J, Ishii H, Yoshida T, Saijo N, Sawada J (2010) Population pharmacokinetics of gemcitabine and its metabolite in Japanese cancer patients: impact of genetic polymorphisms. Clin Pharmacokinet 49:549–558

    Article  PubMed  CAS  Google Scholar 

  19. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, Saito Y, Ozawa S, Sawada J, Kamatani N, Furuse J, Ishii H, Yoshida T, Ueno H, Okusaka T, Saijo N (2007) Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 25:32–42

    Article  PubMed  CAS  Google Scholar 

  20. Sugiyama E, Lee SJ, Lee SS, Kim WY, Kim SR, Tohkin M, Hasegawa R, Okuda H, Kawamoto M, Kamatani N, Sawada J, Kaniwa N, Saito Y, Shin JG (2009) Ethnic differences of two non-synonymous single nucleotide polymorphisms in CDA gene. Drug Metab Pharmacokinet 24:553–556

    Article  PubMed  CAS  Google Scholar 

  21. Tham LS, Wang LZ, Soo RA, Lee HS, Lee SC, Goh BC, Holford NH (2008) Does saturable formation of gemcitabine triphosphate occur in patients? Cancer Chemother Pharmacol 63:55–64

    Article  PubMed  CAS  Google Scholar 

  22. Tibaldi C, Giovannetti E, Vasile E, Mey V, Laan AC, Nannizzi S, Di Marsico R, Antonuzzo A, Orlandini C, Ricciardi S, Del Tacca M, Peters GJ, Falcone A, Danesi R (2008) Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 14:1797–1803

    Article  PubMed  CAS  Google Scholar 

  23. US Department of Health, Human Services FaDAF, Center for Drug Evaluation, Research (CDER), Center for Biologics Evaluation, Research (CBER) (1999) Guidance for industry on population pharmacokinetics: availability. Food and Drug Administration, HHS. Notice. Fed Regist 64:6663–6664

    Google Scholar 

  24. Ulrich CM, Robien K, McLeod HL (2003) Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat Rev Cancer 3:912–920

    Article  PubMed  CAS  Google Scholar 

  25. Vainchtein LD, Rosing H, Thijssen B, Schellens JH, Beijnen JH (2007) Validated assay for the simultaneous determination of the anti-cancer agent gemcitabine and its metabolite 2′, 2′-difluorodeoxyuridine in human plasma by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2312–2322

    Article  PubMed  CAS  Google Scholar 

  26. Venook AP, Egorin MJ, Rosner GL, Hollis D, Mani S, Hawkins M, Byrd J, Hohl R, Budman D, Meropol NJ, Ratain MJ (2000) Phase I and pharmacokinetic trial of gemcitabine in patients with hepatic or renal dysfunction: Cancer and Leukemia Group B 9565. J Clin Oncol 18:2780–2787

    PubMed  CAS  Google Scholar 

  27. Wade JR, Edholm M, Salmonson T (2005) A guide for reporting the results of population pharmacokinetic analyses: a Swedish perspective. AAPS J 7:45

    Article  PubMed  Google Scholar 

  28. Yue L, Saikawa Y, Ota K, Tanaka M, Nishimura R, Uehara T, Maeba H, Ito T, Sasaki T, Koizumi S (2003) A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 13:29–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Joerger is supported by a fellowship grant funded by the European Society of Medical Oncology, by a Novartis-UICC Translational Cancer Research Fellowship funded by Novartis AG, and by a research grant from the Swiss National Science Foundation (PBBSB-102331).

Conflict of interest

None of the authors has any former or present conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joerger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joerger, M., Burgers, J.A., Baas, P. et al. Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine. Cancer Chemother Pharmacol 69, 25–33 (2012). https://doi.org/10.1007/s00280-011-1670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1670-4

Keywords

Navigation