Skip to main content
Log in

DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To explore the DNA incorporation of 6-thioguanine nucleotide levels (DNA-6TGN) during 6-mercaptopurine (6MP) therapy of childhood acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma (NHL) and its relation to erythrocyte levels of their metabolites: 6-thioguanine-nucleotides (E-6TGN), methylated metabolites (E-MeMP), Methotrexate polyglutamates (E-MTX), and to thiopurine methyltransferase activity (TPMT).

Methods

We studied these metabolites in 229 blood samples from 18 children with ALL (N = 16) or NHL (N = 2) on 6MP/Methotrexate maintenance therapy.

Results

DNA-6TGN levels were significantly correlated to E-6TGN (r p = 0.66, p = 0.003) with a trend to reach a plateau at high E-6TGN levels. To explore the relative DNA incorporation of 6TGN in relation to cytosol 6TGN levels, a DNA-6TGN index was calculated as DNA-6TGN/E-6TGN. The DNA-6TGN index was inversely correlated to E-6TGN (r p = −0.58, p = 0.012), which implies that with increasing levels of E-6TGN relatively less 6TGN are incorporated into DNA. E-MeMP levels were correlated to the DNA-TGN index (r p = 0.60, p = 0.008), indicating that high levels of MeMP result in enhanced DNA-6TGN incorporation, possibly due to inhibition of purine de novo synthesis, mediated by some of the methylated 6MP metabolites.

Conclusions

DNA-6TGN may prove to be a more relevant pharmacokinetic parameter for monitoring 6MP treatment intensity than the previously used erythrocyte 6MP metabolites levels. Prospective clinical trials are needed to evaluate the usefulness of DNA-6TGN for individual dose adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmiegelow K, Gustafsson G (2005) Acute lymphoblastic leukemia. In: Caron M (ed) Cancer in children. Oxford University Press, Oxford, pp 138–170

    Google Scholar 

  2. Schmiegelow K, Pulczynska MK (1990) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: should dosage be guided by white blood cell counts? Am J Pediatr Hematol Oncol 12:462–467

    Article  CAS  PubMed  Google Scholar 

  3. Arico M, Baruchel A, Bertrand Y, Biondi A, Conter V, Eden T, Gadner H, Gaynon P, Horibe K, Hunger SP, Janka-Schaub G, Masera G, Nachman J, Pieters R, Schrappe M, Schmiegelow K, Valsecchi MG, Pui CH (2005) The seventh international childhood acute lymphoblastic leukemia workshop report: Palermo, Italy, January 29–30, 2005. Leukemia 19:1145–1152

    Article  CAS  PubMed  Google Scholar 

  4. Uribe-Luna S, Quintana-Hau JD, Maldonado-Rodriguez R, Espinosa-Lara M, Beattie KL, Farquhar D, Nelson JA (1997) Mutagenic consequences of the incorporation of 6-thioguanine into DNA. Biochem Pharmacol 54:419–424

    Article  CAS  PubMed  Google Scholar 

  5. Bokkerink JP, Stet EH, De Abreu RA, Damen FJ, Hulscher TW, Bakker MA, van Baal JA (1993) 6-Mercaptopurine: cytotoxicity and biochemical pharmacology in human malignant T-lymphoblasts. Biochem Pharmacol 45:1455–1463

    Article  CAS  PubMed  Google Scholar 

  6. Schmiegelow K, Forestier E, Kristinsson J, Soderhall S, Vettenranta K, Weinshilboum R, Wesenberg F (2009) Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 23:557–564

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Weinshilboum R (2006) Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene 25:1629–1638

    Article  CAS  PubMed  Google Scholar 

  8. Lilleyman JS, Lennard L (1994) Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 343:1188–1190

    Article  CAS  PubMed  Google Scholar 

  9. Erb N, Harms DO, Janka-Schaub G (1998) Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemother Pharmacol 42:266–272

    Article  CAS  PubMed  Google Scholar 

  10. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE (1999) Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 93:2817–2823

    CAS  PubMed  Google Scholar 

  11. Schmiegelow K, Schroder H, Gustafsson G, Kristinsson J, Glomstein A, Salmi T, Wranne L (1995) Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology. J Clin Oncol 13:345–351

    CAS  PubMed  Google Scholar 

  12. Lennard L (2001) Therapeutic drug monitoring of cytotoxic drugs. Br J Clin Pharmacol 52:75–87

    Article  Google Scholar 

  13. Gustafsson G, Schmiegelow K, Forestier E, Clausen N, Glomstein A, Jonmundsson G, Mellander L, Makipernaa A, Nygaard R, Saarinen-Pihkala UM (2000) Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Nordic Society of Pediatric Haematology and Oncology (NOPHO). Leukemia 14:2267–2275

    Article  CAS  PubMed  Google Scholar 

  14. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  Google Scholar 

  15. Bruunshuus I, Schmiegelow K (1989) Analysis of 6-mercaptopurine, 6-thioguanine nucleotides, and 6-thiouric acid in biological fluids by high-performance liquid chromatography. Scand J Clin Lab Invest 49:779–784

    Article  CAS  PubMed  Google Scholar 

  16. Erdmann GR, Steury JC, Carleton BC, Stafford RJ, Bostrom BC, Canafax DM (1991) Reversed-phase high-performance liquid chromatographic approach to determine total lymphocyte concentrations of 6-thioguanine, methylmercaptopurine and methylthioguanine in humans. J Chromatogr 571:149–156

    Article  CAS  PubMed  Google Scholar 

  17. Kamen BA, Takach PL, Vatev R, Caston JD (1976) A rapid, radiochemical-ligand binding assay for methotrexate. Anal Biochem 70:54–63

    Article  CAS  PubMed  Google Scholar 

  18. Siegel S, Castellan NJ (1988) Non-parametric statistics for the behavioral science. McGraw-Hill, Singapore

    Google Scholar 

  19. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  20. Peeters M, Koren G, Jakubovicz D, Zipursky A (1988) Physician compliance and relapse rates of acute lymphoblastic leukemia in children. Clin.Pharmacol Ther 43:228–232

    CAS  PubMed  Google Scholar 

  21. Lancaster D, Lennard L, Lilleyman JS (1997) Profile of non-compliance in lymphoblastic leukaemia. Arch Dis Child 76:365–366

    Article  CAS  PubMed  Google Scholar 

  22. Lennard L, Van Loon JA, Weinshilboum RM (1989) Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 46:149–154

    CAS  PubMed  Google Scholar 

  23. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  CAS  PubMed  Google Scholar 

  24. Cuffari C, Dassopoulos T, Turnbough L, Thompson RE, Bayless TM (2004) Thiopurine methyltransferase activity influences clinical response to azathioprine in inflammatory bowel disease. Clin Gastroenterol Hepatol 2:410–417

    Article  CAS  PubMed  Google Scholar 

  25. Schmiegelow K, Bjork O, Glomstein A, Gustafsson G, Keiding N, Kristinsson J, Makipernaa A, Rosthoj S, Szumlanski C, Sorensen TM, Weinshilboum R (2003) Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol 21:1332–1339

    Article  CAS  PubMed  Google Scholar 

  26. Krynetski EY, Tai HL, Yates CR, Fessing MY, Loennechen T, Schuetz JD, Relling MV, Evans WE (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6:279–290

    Article  CAS  PubMed  Google Scholar 

  27. Andersen JB, Szumlanski C, Weinshilboum RM, Schmiegelow K (1998) Pharmacokinetics, dose adjustments, and 6-mercaptopurine/methotrexate drug interactions in two patients with thiopurine methyltransferase deficiency. Acta Paediatr 87:108–111

    Article  CAS  PubMed  Google Scholar 

  28. Bo J, Schroder H, Kristinsson J, Madsen B, Szumlanski C, Weinshilboum R, Andersen JB, Schmiegelow K (1999) Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 86:1080–1086

    Article  CAS  PubMed  Google Scholar 

  29. Schmiegelow K, Al-Modhwahi I, Andersen MK, Behrendtz M, Forestier E, Hasle H, Heyman M, Kristinsson J, Nersting J, Nygaard R, Svendsen AL, Vettenranta K, Weinshilboum R (2009) Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 113:6077–6084

    Article  CAS  PubMed  Google Scholar 

  30. Harms DO, Gobel U, Spaar HJ, Graubner UB, Jorch N, Gutjahr P, Janka-Schaub GE (2003) Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 102:2736–2740

    Article  CAS  PubMed  Google Scholar 

  31. Vora A, Mitchell CD, Lennard L, Eden TO, Kinsey SE, Lilleyman J, Richards SM (2006) Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 368:1339–1348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has received financial support from H:S Research Fund 2000 (Grant no. 120), the Danish Cancer Society (Grant no. 99144069132), the Danish Childhood Cancer Foundation, The University Hospital Rigshospitalet, Novo Nordic Foundation, Home Secretary Research Grant for Individualised Therapy, and Danish Research Council for Health and Disease (Grant no. 271-0615). Kjeld Schmiegelow holds the Childhood Cancer Foundation Research Professorship in Pediatric Oncology. A special thanks to Jens Bo Thomsen, who has performed the DNA-6TGN analysis and data registration.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjeld Schmiegelow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedeland, R.L., Hvidt, K., Nersting, J. et al. DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma. Cancer Chemother Pharmacol 66, 485–491 (2010). https://doi.org/10.1007/s00280-009-1184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1184-5

Keywords

Navigation