Skip to main content

Advertisement

Log in

SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The Aurora family of serine/threonine kinases (Aurora-A, Aurora-B, and Aurora-C) plays a key role in cells orderly progression through mitosis. Elevated expression levels of Aurora kinases have been detected in a high percentage of melanoma, colon, breast, ovarian, gastric, and pancreatic tumors. We characterized the biological and pharmacological properties of SNS-314, an ATP-competitive, selective, and potent inhibitor of Aurora kinases.

Methods

We studied the biochemical potency and selectivity of SNS-314 to inhibit Aurora kinases A, B, and C. The inhibition of cellular proliferation induced by SNS-314 was evaluated in a broad range of tumor cell lines and correlated to inhibition of histone H3 phosphorylation, inhibition of cell-cycle progression, increase in nuclear content and cell size, loss of viability, and induction of apoptosis. The dose and administration schedule of SNS-314 was optimized for in vivo efficacy in mouse xenograft models of human cancer.

Results

In the HCT116 human colon cancer xenograft model, administration of 50 and 100 mg/kg SNS-314 led to dose-dependent inhibition of histone H3 phosphorylation for at least 10 h, indicating effective Aurora-B inhibition in vivo. HCT116 tumors from animals treated with SNS-314 showed potent and sustained responses including reduction of phosphorylated histone H3 levels, increased caspase-3 and appearance of increased nuclear size. The compound showed significant tumor growth inhibition in a dose-dependent manner under a variety of dosing schedules including weekly, bi-weekly, and 5 days on/9 days off.

Conclusions

SNS-314 is a potent small-molecule inhibitor of Aurora kinases developed as a novel anti-cancer therapeutic agent for the treatment of diverse human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN Jr, Gandara DR (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648

    Article  CAS  PubMed  Google Scholar 

  2. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  PubMed  Google Scholar 

  3. Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22:451–464

    Article  PubMed  Google Scholar 

  4. Naruganahalli KS, Lakshmanan M, Dastidar SG, Ray A (2006) Therapeutic potential of Aurora kinase inhibitors in cancer. Curr Opin Investig Drugs 7:1044–1051

    CAS  PubMed  Google Scholar 

  5. Kimura M, Matsuda Y, Yoshioka T, Okano Y (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274:7334–7340

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Sakashita G, Matsuzaki H et al (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J Biol Chem 279:47201–47211

    Article  CAS  PubMed  Google Scholar 

  7. Sasai K, Katayama H, Stenoien DL et al (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskelet 59:249–263

    Article  CAS  Google Scholar 

  8. Sen S, Zhou H, White RA (1997) A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14:2195–2200

    Article  CAS  PubMed  Google Scholar 

  9. Jeng YM, Peng SY, Lin CY, Hsu HC (2004) Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10:2065–2071

    Article  CAS  PubMed  Google Scholar 

  10. Hu W, Kavanagh JJ, Deaver M et al (2005) Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res 15:49–57

    CAS  PubMed  Google Scholar 

  11. Tanaka E, Hashimoto Y, Ito T et al (2005) The clinical significance of Aurora-A/STK15/BTAK expression in human esophageal squamous cell carcinoma. Clin Cancer Res 11:1827–1834

    Article  CAS  PubMed  Google Scholar 

  12. Tchatchou S, Wirtenberger M, Hemminki K et al (2007) Aurora kinases A and B and familial breast cancer risk. Cancer Lett 247:266–272

    Article  CAS  PubMed  Google Scholar 

  13. Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G (2006) Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Mol Cancer Ther 5:2905–2913

    Article  CAS  PubMed  Google Scholar 

  14. Katayama H, Ota T, Jisaki F et al (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91:1160–1162

    Article  CAS  PubMed  Google Scholar 

  15. Bischoff JR, Anderson L, Zhu Y et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  CAS  PubMed  Google Scholar 

  16. Tarnawski A, Pai R, Chiou SK, Chai J, Chu EC (2005) Rebamipide inhibits gastric cancer growth by targeting survivin and Aurora-B. Biochem Biophys Res Commun 334:207–212

    Article  CAS  PubMed  Google Scholar 

  17. Lee EC, Frolov A, Li R, Ayala G, Greenberg NM (2006) Targeting Aurora kinases for the treatment of prostate cancer. Cancer Res 66:4996–5002

    Article  CAS  PubMed  Google Scholar 

  18. Chieffi P, Cozzolino L, Kisslinger A et al (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66:326–333

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson RW, Odedra R, Heaton SP et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13:3682–3688

    Article  CAS  PubMed  Google Scholar 

  20. Harrington EA, Bebbington D, Moore J et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  CAS  PubMed  Google Scholar 

  21. Carpinelli P, Ceruti R, Giorgini ML et al (2007) PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther 6:3158–3168

    Article  CAS  PubMed  Google Scholar 

  22. Manfredi MG, Ecsedy JA, Meetze KA et al (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 104:4106–4111

    Article  CAS  PubMed  Google Scholar 

  23. Oslob JD, Romanowski MJ, Allen DA et al (2008) Discovery of a potent and selective Aurora kinase inhibitor. Bioorg Med Chem Lett 18:4880–4884

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y-X, Knyazev PG, Cheburkin YV et al (2008) AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 68:1905–1915

    Article  CAS  PubMed  Google Scholar 

  25. Sridhar SS, Hedley D, Siu LL (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4:677–685

    Article  CAS  PubMed  Google Scholar 

  26. Vogel W (1999) Discoidin domain receptors: structural relations and functional implications. FASEB J 13:77–82

    Google Scholar 

  27. Karkkainen MJ, Petrova TV (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19:5598–5605

    Article  CAS  PubMed  Google Scholar 

  28. Roussel MF, Sherr CJ (2003) Oncogenic potential of the c-FMS proto-oncogene (CSF-1 receptor). Cell Cycle 2:5–6

    CAS  PubMed  Google Scholar 

  29. Pierotti MA, Greco A (2006) Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 232:90–98

    Article  CAS  PubMed  Google Scholar 

  30. Festuccia C, Gravina GL, Millimaggi D et al (2007) Uncoupling of the epidermal growth factor receptor from downstream signal transduction molecules guides the acquired resistance to gefitinib in prostate cancer cells. Oncol Rep 18:503–511

    CAS  PubMed  Google Scholar 

  31. Chan F, Sun C, Perumal M et al (2007) Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Mol Cancer Ther 6:3147–3157

    Article  CAS  PubMed  Google Scholar 

  32. Soncini C, Carpinelli P, Gianellini L et al (2006) PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 12:4080–4089

    Article  CAS  PubMed  Google Scholar 

  33. Monier K, Mouradian S, Sullivan KF (2007) DNA methylation promotes Aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 120:101–114

    Article  CAS  PubMed  Google Scholar 

  34. Evanchik M, Hogan J, Arbitrario J, et al (2008) SNS-314, a potent inhibitor of Aurora kinases, has preclinical anti-tumor activity and induces apoptosis. AACR Meeting Abstracts 2008, p. 5648

  35. Carpinelli P, Moll J (2008) Aurora kinase inhibitors: identification and preclinical validation of their biomarkers. Expert Opin Ther Targets 12:69–80

    Article  CAS  PubMed  Google Scholar 

  36. Elling RA, Tangonan BT, Penny DM et al (2007) Mouse Aurora A: expression in Escherichia coli and purification. Protein Expr Purif 54:139–146

    Article  CAS  PubMed  Google Scholar 

  37. Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60:321–347

    Article  CAS  PubMed  Google Scholar 

  38. Thain A, Gaston K, Jenkins O, Clarke AR (1996) A method for the separation of GST fusion proteins from co-purifying GroEL. Trends Genet 12:209–210

    Article  CAS  PubMed  Google Scholar 

  39. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA (2005) Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44:7704–7712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for their contributions to the SNS-314 project Darrin A. Allen, Subramanian Baskaran, Minna Bui, Emily J. Hanan, Stacey A. Heumann, Willard Lew, Robert S. McDowell, Johan D. Oslob, Wang Shen, Joshua C. Yoburn, Chul H. Yu and Min Zhong (Chemistry), Jeffrey Kumer and Tara Mullaney (Pharmacology), Tom O’Brien and Bradley Tangonan (Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Taverna.

Additional information

Author names appear in alphabetical order.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental information (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbitrario, J.P., Belmont, B.J., Evanchik, M.J. et al. SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo. Cancer Chemother Pharmacol 65, 707–717 (2010). https://doi.org/10.1007/s00280-009-1076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1076-8

Keywords

Navigation