Skip to main content

Advertisement

Log in

Irinotecan changes gene expression in the small intestine of the rat with breast cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aetiology of mucositis is complex involving change in gene expression, altered apoptosis and interaction between epithelial and subepithelial compartments. This is the first investigation using microarray to assess chemotherapy-induced changes in the gut. The aims of this study were to identify genes that are altered by irinotecan, to determine how these genes contribute to apoptosis and to identify any potential gene families and pathways that are important for mucositis development.

Methods

Tumour-bearing female dark Agouti rats were administered twice with 150 mg/kg of irinotecan and killed 6 h after the final dose. Jejunal tissue was harvested and RNA was isolated. cDNA was synthesised and purified, prior to hybridisation and microarray analysis. A 5-K oligo clone set was used to investigate gene expression. Results from the microarray were quantified using RT-PCR.

Results

Many genes were significantly up- or down-regulated by irinotecan. In particular, multiple genes implicated in the mitogen-activated protein kinase (MAPK) signalling pathway were differentially regulated following treatment. These included interleukin 1 receptor, caspases, protein kinase C and dual-specificity phosphatase 6. RT-PCR was used to confirm effects of irinotecan on caspase-1 expression in jejunal tissue and was significantly increased 6 h after treatment with irinotecan.

Conclusions

This study has identified MAP kinase signalling as being involved with irinotecan-induced intestinal damage and confirms previous findings with radiation-induced oral mucosal damage, which also implicated this pathway. Microarrays are emerging as a valuable tool in mucositis research by linking such findings. The common pathway of chemotherapy- and radiotherapy-induced damage, which utilises the caspase-cascade, may be a useful target to prevent apoptosis following cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alimonti A, Gelibter A, Pavese I, Satta F, Cognetti F, Ferretti G et al (2004) New approaches to prevent intestinal toxicity of irinotecan-based regimens. Cancer Treat Rev 30(6):555–562

    Article  PubMed  CAS  Google Scholar 

  2. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G et al (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303(5661): 1201–1204

    Article  PubMed  CAS  Google Scholar 

  3. Ando Y, Hasegawa Y (2005) Clinical pharmacogenetics of irinotecan (CPT-11). Drug Metab Rev 37(3):565–574

    Article  PubMed  CAS  Google Scholar 

  4. Barisani D, Parafioriti A, Bardella MT, Zoller H, Conte D, Armiraglio E et al (2004) Adaptive changes of duodenal iron transport proteins in celiac disease. Physiol Genomics 17(3):316–325

    Article  PubMed  CAS  Google Scholar 

  5. Boushey RP, Yusta B, Drucker DJ (2001) Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res 61(2):687–693

    PubMed  CAS  Google Scholar 

  6. Bowen JM, Gibson RJ, Keefe DM, Cummins AG (2005) Cytotoxic chemotherapy upregulate pro-apoptotic Bax and Bak in the small intestine of rats and humans. Pathology 37(1):56–62

    Article  PubMed  CAS  Google Scholar 

  7. Bruno ME, Kaetzel CS (2005) Long-term exposure of the HT-29 human intestinal epithelial cell line to TNF causes sustained up-regulation of the polymeric Ig receptor and proinflammatory genes through transcriptional and post-transcriptional mechanisms. J Immunol 174(11):7278–7284

    PubMed  CAS  Google Scholar 

  8. Cairo G, Pietrangelo A (1995) Nitric oxide-mediated activation of iron-regulatory protein controls hepatic iron metabolism during acute inflammation. Eur J Biochem 232(2):358–363

    Article  PubMed  CAS  Google Scholar 

  9. Cao S, Black JD, Troutt AB, Rustum YM (1998) Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res 58(15): 3270–3274

    PubMed  CAS  Google Scholar 

  10. Chu QS, Hammond LA, Schwartz G, Ochoa L, Rha SY, Denis L et al (2004) Phase I and pharmacokinetic study of the oral fluoropyrimidine S-1 on a once-daily-for-28-day schedule in patients with advanced malignancies. Clin Cancer Res 10(15):4913–4921

    Article  PubMed  CAS  Google Scholar 

  11. Creagh EM, Conroy H, Martin SJ (2003) Caspase activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    Article  PubMed  CAS  Google Scholar 

  12. Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM (2003) Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18(9):1095–1100

    Article  PubMed  CAS  Google Scholar 

  13. Gibson RJ, Bowen JM, Keefe DM (2005) Palifermin reduces diarrhea and increases survival following irinotecan treatment in tumor-bearing DA rats. Int J Cancer 116(3):464–470

    Article  PubMed  CAS  Google Scholar 

  14. Gibson RJ, Keefe DM, Clarke JM, Regester GO, Thompson FM, Goland GJ et al (2002) The effect of keratinocyte growth factor on tumour growth and small intestinal mucositis after chemotherapy in the rat with breast cancer. Cancer Chemother Pharmacol 50(1):53–58

    Article  PubMed  CAS  Google Scholar 

  15. Gibson RJ, Keefe DM, Thompson FM, Clarke JM, Goland GJ, Cummins AG (2002) Effect of interleukin-11 on ameliorating intestinal damage after methotrexate treatment of breast cancer in rats. Digestive Dis Sci 47(12): 2751–2757

    Article  CAS  Google Scholar 

  16. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10(6):649–655

    Article  PubMed  CAS  Google Scholar 

  17. Ikuno N, Soda H, Watanabe M, Oka M (1995) Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J Natl Cancer Inst 87(24):1876–1883

    PubMed  CAS  Google Scholar 

  18. Jarry A, Vallette G, Cassagnau E, Moreau A, Bou-Hanna C, Lemarre P et al (1999) Interleukin 1 and interleukin 1 beta converting enzyme (caspase 1) expression in the human colonic epithelial barrier. Caspase 1 downregulation in colon cancer. Gut 45(2):246–251

    Article  PubMed  CAS  Google Scholar 

  19. Johnson MR, Hageboutros A, Wang K, High L, Smith JB, Diasio RB (1999) Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin Cancer Res 5(8):2006–2011

    PubMed  CAS  Google Scholar 

  20. Katona C, Kralovanszky J, Rosta A, Pandi E, Fonyad G, Toth K, et al. (1998) Putative role of dihydropyrimidine dehydrogenase in the toxic side effect of 5-fluorouracil in colorectal cancer patients. Oncology 55(5):468–474

    Article  PubMed  CAS  Google Scholar 

  21. Keefe DM (2004) Gastrointestinal mucositis: a new biological model. Support Care Cancer 12(1):6–9

    Article  PubMed  Google Scholar 

  22. Keefe DM, Brealey J, Goland GJ, Cummins AG (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47(5):632–637

    Article  PubMed  CAS  Google Scholar 

  23. Keefe DM, Gibson RJ, Hauer-Jensen M (2004) Gastrointestinal mucositis. Semin Oncol Nurs 20(1):38–47

    Article  PubMed  Google Scholar 

  24. Kondo S, Barna BP, Morimura T, Takeuchi J, Yuan J, Akbasak A et al (1995) Interleukin-1 beta-converting enzyme mediates cisplatin-induced apoptosis in malignant glioma cells. Cancer Res 55(24):6166–6171

    PubMed  CAS  Google Scholar 

  25. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P (2004) Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem 279(23):24785–24793

    Article  PubMed  CAS  Google Scholar 

  26. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C (2005) Vital functions for lethal caspases. Oncogene 24(33):5137–5148

    Article  PubMed  CAS  Google Scholar 

  27. Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115(10):2665–2672

    Article  PubMed  CAS  Google Scholar 

  28. Lonnstedt I, Britton T (2005) Hierarchical Bayes models for cDNA microarray gene expression. Biostatistics 6(2):279–291

    Article  PubMed  Google Scholar 

  29. Lönnstedt I, Speed TP (2002) Replicated microarray data. Statistica Sinica 12:31–46

    Google Scholar 

  30. Marshman E, Ottewell PD, Potten CS, Watson AJ (2001) Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol 195(3):285–292

    Article  PubMed  CAS  Google Scholar 

  31. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117(5):561–574

    Article  PubMed  CAS  Google Scholar 

  32. Morelli D, Menard S, Colnaghi MI, Balsari A (1996) Oral administration of anti-doxorubicin monoclonal antibody prevents chemotherapy-induced gastrointestinal toxicity in mice. Cancer Res 56(9):2082–2085

    PubMed  CAS  Google Scholar 

  33. Morvan FO, Baroukh B, Ledoux D, Caruelle JP, Barritault D, Godeau G et al (2004) An engineered biopolymer prevents mucositis induced by 5-fluorouracil in hamsters. Am J Pathol 164(2):739–746

    PubMed  CAS  Google Scholar 

  34. Mulder TP, van der Sluys Veer A, Verspaget HW, Griffioen G, Pena AS, Janssens AR et al (1994) Effect of oral zinc supplementation on metallothionein and superoxide dismutase concentrations in patients with inflammatory bowel disease. J Gastroenterol Hepatol 9(5):472–477

    PubMed  CAS  Google Scholar 

  35. Philchenkov A (2004) Caspases: potential targets for regulating cell death. J Cell Mol Med 8(4):432–444

    PubMed  CAS  Google Scholar 

  36. Pico J, Avila-Garavito A, Naccache P (1998) Mucositis: its occurrence, consequences and treatment in the oncology setting. Oncologist 3:446–451

    PubMed  Google Scholar 

  37. Russo A, Corsale S, Cammareri P, Agnese V, Cascio S, Di Fede G et al (2005) Pharmacogenomics in colorectal carcinomas: future perspectives in personalized therapy. J Cell Physiol 204(3):742–749

    Article  PubMed  CAS  Google Scholar 

  38. Scheinin T, Bohling T, Halme L, Kontiainen S, Bjorge L, Meri S (1999) Decreased expression of protectin (CD59) in gut epithelium in ulcerative colitis and Crohn’s disease. Hum Pathol 30(12):1427–1430

    Article  PubMed  CAS  Google Scholar 

  39. Schreiber S, MacDermott RP, Raedler A, Pinnau R, Bertovich MJ, Nash GS (1991) Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101(4):1020–1030

    PubMed  CAS  Google Scholar 

  40. Shibata Y, Takiguchi H, Tamura K, Yamanaka K, Tezuka M, Abiko Y (1996) Stimulation of interleukin-1 beta-converting enzyme activity during growth inhibition by CPT-11 in the human myeloid leukemia cell line K562. Biochem Mol Med 57(1):25–30

    Article  PubMed  CAS  Google Scholar 

  41. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statist Appl Genet Mol Biol 3(1):2004

    Google Scholar 

  42. Sonis ST (2004) A biological approach to mucositis. J Support Oncol 2(1):21–32; discussion 35–36

    PubMed  Google Scholar 

  43. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284

    Article  PubMed  CAS  Google Scholar 

  44. Sonis ST (2004) Pathobiology of mucositis. Semin Oncol Nurs 20(1):11–15

    Article  PubMed  Google Scholar 

  45. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M et al (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100(9 suppl):1995–2025

    Article  PubMed  Google Scholar 

  46. Sonis ST, Scherer J, Phelan S, Lucey CA, Barron JE, O’Donnell KE et al (2002) The gene expression sequence of radiated mucosa in an animal mucositis model. Cell Prolif 35(suppl 1):93–102

    Article  PubMed  CAS  Google Scholar 

  47. Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E et al (1996) Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 56(16):3752–3757

    PubMed  CAS  Google Scholar 

  48. Tran CD, Howarth GS, Coyle P, Philcox JC, Rofe AM, Butler RN (2003) Dietary supplementation with zinc and a growth factor extract derived from bovine cheese whey improves methotrexate-damaged rat intestine. Am J Clin Nutr 77(5):1296–1303

    PubMed  CAS  Google Scholar 

  49. Vakeva A, Laurila P, Meri S (1992) Loss of expression of protectin (CD59) is associated with complement membrane attack complex deposition in myocardial infarction. Lab Invest 67(5):608–616

    PubMed  CAS  Google Scholar 

  50. Yang YH, Buckley MJ, Speed TP (2001) Analysis of cDNA microarray images. Brief Bioinform 2(4):341–349

    Article  PubMed  CAS  Google Scholar 

  51. Yu J, Shannon WD, Watson MA, McLeod HL (2005) Gene expression profiling of the irinotecan pathway in colorectal cancer. Clin Cancer Res 11(5):2053–2062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr Ashley Connelly and the Adelaide Microarray Facility for assistance with this project, and Pfizer for the supply of the irinotecan. J. Bowen was supported by a Dawes Research Fellowship (Royal Adelaide Hospital) for the duration of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne M. Bowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, J.M., Gibson, R.J., Cummins, A.G. et al. Irinotecan changes gene expression in the small intestine of the rat with breast cancer. Cancer Chemother Pharmacol 59, 337–348 (2007). https://doi.org/10.1007/s00280-006-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0275-9

Keywords

Navigation