Skip to main content
Log in

Modulation of 5-fluorouracil host-toxicity and chemotherapeutic efficacy against human colon tumors by 5-(Phenylthio)acyclouridine, a uridine phosphorylase inhibitor

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: The purpose of this investigation was to evaluate the effectiveness of oral 5-(phenylthio)acyclouridine (PTAU) in reducing 5-fluorouracil (FUra) host-toxicity and enhancing its chemotherapeutic efficacy against human colon tumors. PTAU is a potent and specific inhibitor of uridine phosphorylase (UrdPase, EC 2.4.2.3), the enzyme responsible for uridine catabolism. Methods: SCID mice bearing human colon DLD-1 or HCT-15 tumors were injected intraperitoneally with FUra (50, 200 or 300 mg/kg) on days 17, 24 and 31 after tumor cell inoculation. PTAU (120 mg/kg), uridine (1,320 mg/kg) or their combination was administered orally 2 or 4 h after FUra injection. Another four administrations of PTAU + uridine were given every 8 h after the first treatment with PTAU plus uridine. Survival and body weight were used to evaluate host toxicity. Tumor weight was used to evaluate the efficacy of the drugs on tumor growth. The mice were monitored for 38 days. Results: Administration of the maximum tolerated dose (50 mg/kg) of FUra reduced DLD-1 and HCT-15 tumor weights by 48 and 59%, respectively, at day 38 post implantation. Administration of 200 mg/kg FUra resulted in 100% mortality. Oral administration of uridine (1,320 mg/kg) alone, 2 h following the administration of 200 mg/kg FUra, did not alleviate FUra host-toxicity as all the mice died. Administration of 120 mg/kg PTAUresulted in partial rescue from this lethal dose of FUra as 63% of mice survived and tumor weights were reduced by approximately 60%. Coadministration of PTAU plus uridine resulted in complete rescue from the toxicity of FUra as 100% of the mice survived and tumor weights were reduced by 81–82%. Delaying the administration of the combination of PTAU plus uridine to 4 h post FUra treatment was less effective in rescuing from FUra toxicity as only 88% of the mice survived and tumor weights were reduced by only 62%. Administration of PTAU alone, under the same conditions, resulted in a 38% survival rate while the tumor weights were reduced by 47%. Treatment with uridine alone did not protect from FUra toxicity at the dose of 200 mg/kg as all mice died. At the higher dose of 300 mg/kg FUra, neither uridine nor PTAU alone, administered 2 h following the treatment with FUra, had any rescuing effect. On the other hand, the use of the PTAU plus uridine combination reduced the tumor weight by 79%, although this reduction in the tumor weight was accompanied by 37% mortality. There was no significant difference between DLD-1 and HCT-15 in their response to the different regimens employed in this study despite the fact that the tumors have different levels of UrdPase. Conclusions: The present results demonstrate that the combination of PTAU plus uridine represents an exceptionally efficient method in increasing FUra chemotherapeutic efficacy while minimizing its host-toxicity. The efficiency of the PTAU plus uridine combination can be attributed to the extraordinary effectiveness of this combinationin raising and maintaining higher levels of uridine in vivo (Al Safarjalani et al., Cancer Chemo Pharmacol 55:541–551, 2005). Therefore, the combination of PTAU plus uridine can provide a better substitute for the large doses of uridine necessary to rescue or protect from FUra host-toxicities, without the toxic side-effects associated with such doses of uridine. This combination may also allow for the escalation of FUra doses for better chemotherapeutic efficacy against human colon carcinoma while avoiding FUra host-toxicities. Alternatively, the combination of PTAU and uridine may be useful as an antidote in the few cases when cancer patients receive a lethal overdose of FUra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Fura:

5-Fluorouracil

HPMC:

Hydroxypropylmethylcellulose

MTD:

Maximum tolerated dose

PTAU:

5-(Phenylthio)acyclouridine

UrdPase:

Uridine phosphorylase [EC 2.4.2.3]

References

  1. Grem JL (1990) Fluorinated Pyrimidines, In: Chabner BA, Collins JM (eds) Cancer chemotherapy; principles and practice. JB Lippincott Co, Philadelphia, pp 180

    Google Scholar 

  2. Peters GJ, van Groeningen CJ (1991) Clinical relevance of biochemical modulation of 5-fluorouracil. Ann Oncol 2:469

    PubMed  CAS  Google Scholar 

  3. van Groeningen CJ, Peters GJ, Pinedo HM (1992) Modulation of fluorouracil toxicity with uridine. Semin Oncol 19:148

    PubMed  Google Scholar 

  4. Ashour OM, Naguib FNM, Panzica RP, Al Safarjalani ON, el Kouni MH (2000) Modulation of 5-fluorouracil host-toxicity by 5-(benzyloxybenzyl)barbituric acid acyclonucleoside, a uridine phosphorylase inhibitor, and 2′,3′,5′-tri-O-acetyluridine, a prodrug of uridine. Biochem Pharmacol 60:427

    Article  PubMed  CAS  Google Scholar 

  5. Bagrij T, Kralovanszky J Gyergyay F, Kiss E, Peters GJ (1993) Influence of uridine treatment in mice on the protection of gastrointestinal toxicity caused by 5-fluorouracil. Anticancer Res 13:789

    PubMed  CAS  Google Scholar 

  6. Klubes P, Cerna I, Meldon MA (1982) Uridine rescue from the lethal toxicity of 5-fluorouracil in mice. Cancer Chemother Pharmacol 8:17

    Article  PubMed  CAS  Google Scholar 

  7. Klubes P, Cerna I (1983) Use of uridine rescue to enhance the antitumor selectivity of 5-fluorouracil. Cancer Res 43:3182

    PubMed  CAS  Google Scholar 

  8. Martin DS, Stolfi RL, Sawyer RC, Spiegelman S, Young CW (1982) High-dose 5-fluorouracil with delayed uridine “rescue” in mice. Cancer Res 42:3964

    PubMed  CAS  Google Scholar 

  9. Peters GJ, van Dijk J, Laurensse E, van Groeningen CJ, Lankelman J, Levya A. Nadal JC, Pinedo HM (1988) In vitro biochemical and in vivo biological studies of the uridine “rescue” of 5-fluorouracil. Br J Cancer 57:259

    PubMed  CAS  Google Scholar 

  10. Seiter K, Kemeny N, Martin D, Schneider A, Williams L, Colofiore J, Sawyer R (1993) Uridine allows dose escalation of 5-fluorouracil when given with N-phosphoancetyl-l-aspartate, methotrexate, and leucovorin. Cancer 71:1875

    Article  PubMed  CAS  Google Scholar 

  11. van Groeningen CJ, Peters GJ, Leyva A, Laurensse E, Pinedo HM (1989) Reversal of 5-fluorouracil induced myelosuppression by prolonged administration of high-dose uridine. J Natl Cancer Inst 81:157

    Article  PubMed  Google Scholar 

  12. Schwartz GK, Christman K, Saltz L, Casper E, Quan V, Bertino J, Martin DS, Colofiore J, Kelsen D (1996) A phase I trial of a modified, dose intensive FAMTX regimen (high dose 5-fluorouracil + doxorubicin + high dose methotrexate+leucovorin) with oral uridine rescue. Cancer 78:1988

    Article  PubMed  CAS  Google Scholar 

  13. Falcone A, Darnowski JW, Ruprecht RM, Chu SH, Burnetti I, Calabresi P (1990) Differential Effect of benzylacyclouridine on the toxic and therapeutic effects of azidothymidine in mice. Blood 76:2216

    PubMed  CAS  Google Scholar 

  14. Leyva A, van Groeningen CJ, Kraal I, Peters GJ, Lankelma J, Pinedo HM (1984) Phase I and pharmacokinetic studies of high-dose uridine intended for rescue from 5-fluorouracil toxicity. Cancer Res 44:5928

    PubMed  CAS  Google Scholar 

  15. van Groeningen CJ, Leyva A, Kraal I, Peters GJ, Pinedo HM (1986) Clinical and pharmacokinetic studies of prolonged administration of high-dose uridine intended for rescue from 5-FU toxicity. Cancer Treat Report 70:745

    Google Scholar 

  16. Cradock JC, Vishnuvajjala BR, Chin TF, Hochstein HD, Ackerman SK (1986) Uridine-induced hyperthermia in the rabbit. J Pharm Pharmacol 38:226

    PubMed  CAS  Google Scholar 

  17. Peters GJ, van Groeningen CJ, Laurensse EJ, Lankelma J, Kraal I, Leyva A, Lankelma J, Pinedo HM (1987) Effect of pyrimidine nucleosides on body temperatures of man and rabbit in relation to pharmacokinetic data. Pharmaceut Res 4:113

    Article  CAS  Google Scholar 

  18. Peters GJ, van Groeningen CJ, Laurensse E, Levya A, Pinedo HM (1987) Uridine-induced hypothermia in mice and rats in relation to plasma and tissue levels of uridine and its metabolites. Cancer Chemother Pharmacol 20:101

    Article  PubMed  CAS  Google Scholar 

  19. van Groeningen CJ, Peters GJ, Nadal JC, Leyva A, Laurensse E, Pinedo HM (1991) Clinical and pharmacologic study of orally administration uridine. J Natl Cancer Inst 83:437

    Article  PubMed  Google Scholar 

  20. Chan TCK, Markman M, Pfeifle CE, Taetle R, Abramson I, Howell SB (1988) Uridine pharmacokinetics in cancer patients. Cancer Chemother Pharmacol 22:83

    Article  PubMed  CAS  Google Scholar 

  21. Gasser T, Moyer JD, Handschumacher RE (1981) Novel single-pass exchange of circulating uridine in rat liver. Science 213:777

    Article  PubMed  CAS  Google Scholar 

  22. Monks A, Cysyk RL (1982) Uridine regulation by the isolated rat liver: perfusion with an artificial oxygen carrier. Am J Physiol 242:R465

    PubMed  CAS  Google Scholar 

  23. Moyer JD, Oliver JT, Handschumacher RE (1981) Salvage of circulating pyrimidine nucleosides in the rat. Cancer Res 41:3010

    PubMed  CAS  Google Scholar 

  24. Holstege A, Gengenbacher H-M, Jehle L, Gerok W (1992) Uridine catabolism by the isolated perfused rat liver. J Hepatology 14:335

    Article  CAS  Google Scholar 

  25. Holstege A, Leser H-G, Pausch J, Gerok W (1985) Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes. Eur J Biochem 149:169

    Article  PubMed  CAS  Google Scholar 

  26. Sommadossi J-P, Cretton EM, Kidd LB, McClure HM, Anderson DC, el Kouni MH (1995) Effects of 5-benzylacyclouridine, an inhibitor of uridine phosphorylase, on the pharmacokinetics of uridine in rhesus monkeys: implications for chemotherapy. Cancer Chemother Pharmacol 37:14

    Article  PubMed  CAS  Google Scholar 

  27. Ashour OM, Naguib FNM, el Kouni MH (1996) 5-(m-Benzyloxybenzyl)barbituric acid acyclonucleoside, a uridine phosphorylase inhibitor and 2′,3′,5′-tri-O-acetyluridine , a prodrug of uridine as modulators of plasma uridine concentration, implication for chemotherapy. Biochem Pharmacol 51:1601

    Article  PubMed  CAS  Google Scholar 

  28. Ashour OM, Naguib FNM, Goudgaon NM, Schinazi RFand el Kouni MH (2000) Effect of 5-(phenylselenenyl)acyclouridine, an inhibitor of uridine phosphorylase, on plasma concentration of uridine released from 2′,3′,5′-tri-o-acetyluridine, a prodrug of uridine: relevance to uridine rescue in chemotherapy. Cancer Chemother Pharmacol 46:235

    Article  PubMed  CAS  Google Scholar 

  29. Kelsen DP, Martin D, O=Neil J, Schwartz G, Saltz L, Sung MT, von Borstel R, Bertino J (1997) Phase I trial of PN401, an oral prodrug of uridine, to prevent toxicity from fluorouracil in patients with avoidance responding. J Clin Oncol 15:1511

    PubMed  CAS  Google Scholar 

  30. Hidalgo M, Villalona-Calero MA, Eckhardt SG, Drengler RL, Rodriguez G, Hammond LA, Diab SG, Weiss G, Garner AM, Campbell E, Davidson K, Louie A, O’Neil JD, von Borstel R, Von Hoff DD, Rowinsky EK (2000) Phase I and pharmacologic study of PN401 and fluorouracil in patients with advanced solid malignancies. J Clin Oncol 18:167

    PubMed  CAS  Google Scholar 

  31. Saydoff JA, Liu LS, Garcia RA, Hu Z, Li D, von Borstel RW (2003) Oral uridine pro-drug PN401 decreases neurodegeneration, behavioral impairment, weight loss and mortality in the 3-nitropropionic acid mitochondrial toxin model of Huntington’s disease. Brain Res 994:44

    Article  PubMed  CAS  Google Scholar 

  32. Ashour OM, Al Safarjalani ON, Naguib FNM, Goudgaon NM, Schinazi RF, el Kouni MH (2000) Modulation of plasma uridine concentration by 5-(phenylselenenyl)acyclouridine an inhibitor of uridine phosphorylase: relevance to chemotherapy. Cancer Chemother Pharmacol 45:351

    Article  PubMed  CAS  Google Scholar 

  33. Darnowski JW, Handschumacher RE (1985) Tissue-specific enhancement of uridine utilization and 5-fluorouracil therapy in mice by benzylacyclouridine. Cancer Res 45:5364

    PubMed  CAS  Google Scholar 

  34. Darnowski JW, Handschumacher RE (1986) Tissue uridine pools: evidence in vivo of a concentrative mechanism for uridine uptake. Cancer Res 46:3490

    PubMed  CAS  Google Scholar 

  35. Darnowski JW, Handschumacher RE (1988) Benzylacyclouridine: pharmacokinetics, metabolism and biochemical effects in mice. Biochem Pharmacol 37:2613

    Article  PubMed  CAS  Google Scholar 

  36. Darnowski JW, Handschumacher RE (1989) Enhancement of fluorouracil therapy by the manipulation of tissue uridine pools. Pharmacol Ther 41:381

    Article  PubMed  CAS  Google Scholar 

  37. Darnowski JW, Handschumacher RE, Wiegand RA, Goulette FA, Calabresi P (1991) Tissue-specific expansion of uridine pools in mice. Effects of benzylacyclouridine, dipyridamole and exogenous uridine. Biochem Pharmacol 41:2031

    Article  PubMed  CAS  Google Scholar 

  38. Davis ST, Joyner SS, Chandrasurin P, Baccanari DP (1993) Species-dependent differences in the biochemical effects and metabolism of 5-benzylacyclouridine. Biochem Pharmacol 45:173

    Article  PubMed  CAS  Google Scholar 

  39. Martin DS, Stolfi RL, Sawyer RC (1989) Use of oral uridine as a substitute for parental uridine rescue of 5-fluorouracil therapy, with and without the uridine phosphorylase inhibitor 5-benzylacyclouridine. Cancer Chemother Pharmacol 24:9

    Article  PubMed  CAS  Google Scholar 

  40. Monks A, Ayers O, Cysyk RL (1983) Effect of 5-benzylacyclouridine, a potent inhibitor of uridine phosphorylase, on the metabolism of circulating uridine by the isolated rat liver. Biochem Pharmacol 32:2003

    Article  PubMed  CAS  Google Scholar 

  41. Sommadossi J-P, Zhu Z, Carlisle R, Xie MY, Weidner DA, el Kouni MH (1990) Novel pharmacologic approaches for the treatment of AIDS and potential use of uridine phosphorylase inhibitors In: Diasio RB, Sommadossi J-P (eds) Advances in chemotherapy of AIDS. Pergamon Press Inc, New York, pp 63

    Google Scholar 

  42. Yee LK, Chu E, Pan Bc, Chu SH, Chen Tm, Lipsky MH, Chu MYW, Calabresi P (1998) Benzylacyclouridine enhances 5-fluorouracil cytotoxicity against human prostate cancer cell lines. Pharmacology 56:80

    Article  PubMed  CAS  Google Scholar 

  43. Al Safarjalani ON, Zhou X-J, Rais RH, Shi J, Schinazi RF Naguib FNM, el Kouni MH (2005) 5-(Phenylthio)acyclouridine, a powerful enhancer of oral uridine bioavailability: relevance to chemotherapy with 5-fluorouracil and other uridine rescue regimens. Cancer Chemother Pharmacol 55:541

    Article  PubMed  CAS  Google Scholar 

  44. Al Safarjalani ON, Zhou X-J, Naguib FNM, Goudgaon NM, Schinazi RF, el Kouni MH (2001) Modulation of the pharmacokinetics of endogenous plasma uridine by 5-(phenylthio)acyclouridine a uridine phosphorylase inhibitor: implications for chemotherapy. Cancer Chemother Pharmacol 48:145

    Article  PubMed  CAS  Google Scholar 

  45. Al Safarjalani ON, Zhou X-J, Naguib FNM, Shi J, Schinazi RF, el Kouni MH (2001) Enhancement of the bioavailability of oral uridine by coadministration of 5-(phenylthio)acyclouridine, a uridine phosphorylase inhibitor: implications for uridine rescue regimens in chemotherapy. Cancer Chemother Pharmacol 48:389

    Article  PubMed  CAS  Google Scholar 

  46. el Kouni MH, Goudgaon NM, Rafeeq M, Al Safarjalani ON, Schinazi RF, Naguib FNM (2000) 5-Phenylthioacyclouridine: a potent and specific inhibitor of uridine phosphorylase. Biochem Pharmacol 60:851

    Article  PubMed  CAS  Google Scholar 

  47. Ashour OM, Naguib FNM, Khalifa MMA, Abdel-Raheem MH, Panzica RP, el Kouni MH (1995). Enhancement of 5-fluoro-2′-deoxyuridine antitumor efficacy by the uridine phosphorylase inhibitor 5-(benzyloxybenzyl)barbituric acid acyclonucleoside. Cancer Res 55:1092

    PubMed  CAS  Google Scholar 

  48. el Kouni MH, Naguib FNM, Park KS, Cha S, Darnowski JW, Soong S-J (1990) Circadian rhythm of hepatic uridine phosphorylase activity and plasma concentration of uridine in mice. Biochem Pharmacol 40:2479

    Article  PubMed  CAS  Google Scholar 

  49. Naguib FNM, Soong S-J, el Kouni MH (1993) Circadian rhythm of orotate phosphoribosyltransferase, pyrimidine nucleoside phosphorylases and dihydrouracil dehydrogenase in mouse liver: possible relevance to chemotherapy with 5-fluoropyrimidines. Biochem Pharmacol 45:667

    Article  PubMed  CAS  Google Scholar 

  50. Naguib FNM, Hao H-N, el Kouni MH (1994) Potentiation of 5-fluorouracil antineoplastic activity by the dihydrouracil dehydrogenase inhibitor 5-benzyloxybenzyluracil. Cancer Res 54:5166

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by grants IRG-60-001-44 from The American Cancer Society, CA 94623 and CA-13148-31 from the NCI, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. el Kouni.

Additional information

This paper is dedicated to the memory of Daniel S. Martin, a colleague and a dear friend. Daniel S. Martin pioneered the use of combination chemotherapy against solid tumors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Safarjalani, O.N., Rais, R., Shi, J. et al. Modulation of 5-fluorouracil host-toxicity and chemotherapeutic efficacy against human colon tumors by 5-(Phenylthio)acyclouridine, a uridine phosphorylase inhibitor. Cancer Chemother Pharmacol 58, 692–698 (2006). https://doi.org/10.1007/s00280-006-0213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0213-x

Keywords

Navigation