Skip to main content
Log in

XPO1 inhibition displays anti-leukemia efficacy against DNMT3A-mutant acute myeloid leukemia via downregulating glutathione pathway

  • Research
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) patients with DNA methyltransferase 3A (DNMT3A) mutation display poor prognosis, and targeted therapy is not available currently. Our previous study identified increased expression of Exportin1 (XPO1) in DNMT3AR882H AML patients. Therefore, we further investigated the therapeutic effect of XPO1 inhibition on DNMT3AR882H AML. Three types of DNMT3AR882H AML cell lines were generated, and XPO1 was significantly upregulated in all DNMT3AR882H cells compared with the wild-type (WT) cells. The XPO1 inhibitor selinexor displayed higher potential in the inhibition of proliferation, promotion of apoptosis, and blockage of the cell cycle in DNMT3AR882H cells than WT cells. Selinexor also significantly inhibited the proliferation of subcutaneous tumors in DNMT3AR882H AML model mice. Primary cells with DNMT3A mutations were more sensitive to selinexor in chemotherapy-naive AML patients. RNA sequencing of selinexor treated AML cells revealed that the majority of metabolic pathways were downregulated after selinexor treatment, with the most significant change in the glutathione metabolic pathway. Glutathione inhibitor L-Buthionine-(S, R)-sulfoximine (BSO) significantly enhanced the apoptosis-inducing effect of selinexor in DNMT3AWT/DNMT3AR882H AML cells. In conclusion, our work reveals that selinexor displays anti-leukemia efficacy against DNMT3AR882H AML via downregulating glutathione pathway. Combination of selinexor and BSO provides novel therapeutic strategy for AML treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This study provides all raw data free of charge. If you have any questions, please contact xiaoyacai6231@163.com. The RNA-seq raw data of cell lines to the GSA database( https://ngdc.cncb.ac.cn/gsub/ ), and the assigned accession of the submission is HRA005049.

References

  1. Shallis RM, Wang R, Davidoff A et al (2019) Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev 36:70–87. https://doi.org/10.1016/j.blre.2019.04.005

    Article  PubMed  Google Scholar 

  2. Shimony S, Stahl M, Stone RM (2023) Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 98(3):502–526. https://doi.org/10.1002/ajh.26822

    Article  PubMed  Google Scholar 

  3. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19(2):81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  4. Khrabrova DA, Yakubovskaya MG, Gromova ES (2021) AML-Associated Mutations in DNA Methyltransferase DNMT3A. Biochemistry. Biokhimiia 86(3):307–318. https://doi.org/10.1134/s000629792103007x

    Article  CAS  Google Scholar 

  5. Wakita S, Marumo A, Morita K et al (2023) Mutational analysis of DNMT3A improves the prognostic stratification of patients with acute myeloid leukemia. Cancer Sci. https://doi.org/10.1111/cas.15720

  6. Tazi Y, Arango-Ossa JE, Zhou Y et al (2022) Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun 13(1):4622. https://doi.org/10.1038/s41467-022-32103-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balasubramanian SK, Azmi AS, Maciejewski J (2022) Selective inhibition of nuclear export: a promising approach in the shifting treatment paradigms for hematological neoplasms. Leukemia 36(3):601–612. https://doi.org/10.1038/s41375-021-01483-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kojima K, Kornblau SM, Ruvolo V et al (2013) Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 121(20):4166–4174. https://doi.org/10.1182/blood-2012-08-447581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martínez Sánchez MP, Megías-Vericat JE, Rodríguez-Veiga R et al (2021) A phase I trial of selinexor plus FLAG-Ida for the treatment of refractory/relapsed adult acute myeloid leukemia patients. Ann Hematol 100(6):1497–1508. https://doi.org/10.1007/s00277-021-04542-8

    Article  CAS  PubMed  Google Scholar 

  10. Beyan C (2021) Mean platelet volume may not be a predictive and prognostic marker in patients with acute myeloid leukemia. Leuk Lymphoma 62(13):3313. https://doi.org/10.1080/10428194.2021.1953017

    Article  CAS  PubMed  Google Scholar 

  11. Sanmiguel JM, Eudy E, Loberg MA et al (2022) Cell origin-dependent cooperativity of mutant Dnmt3a and Npm1 in clonal hematopoiesis and myeloid malignancy. Blood Adv 6(12):3666–3677. https://doi.org/10.1182/bloodadvances.2022006968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roca-Portoles A, Rodriguez-Blanco G, Sumpton D et al (2020) Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis 11(8):616. https://doi.org/10.1038/s41419-020-02867-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zavorka Thomas ME, Lu X, Talebi Z et al (2021) Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3-ITD-Positive AML. Mol Cancer Ther 20(11):2207–2217. https://doi.org/10.1158/1535-7163.Mct-21-0071

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang L, Liu Y, Zhang N et al (2017) Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget 8(18):30395–30409. https://doi.org/10.18632/oncotarget.16449

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kulkoyluoglu-Cotul E, Smith BP, Wrobel K et al (2019) Combined Targeting of Estrogen Receptor Alpha and XPO1 Prevent Akt Activation, Remodel Metabolic Pathways and Induce Autophagy to Overcome Tamoxifen Resistance. Cancers 11(4). https://doi.org/10.3390/cancers11040479

  16. Que Y, Li H, Lin L et al (2021) Study on the Immune Escape Mechanism of Acute Myeloid Leukemia With DNMT3A Mutation. Front Immunol 12:653030. https://doi.org/10.3389/fimmu.2021.653030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mussai F, de Santo C, Abu-Dayyeh I et al (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122(5):749–758. https://doi.org/10.1182/blood-2013-01-480129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weldy CS, Luttrell IP, White CC et al (2012) Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice. Free Radic Biol Med 53(6):1264–1278. https://doi.org/10.1016/j.freeradbiomed.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Lin J, Guo S et al (2020) RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int 20(1):587. https://doi.org/10.1186/s12935-020-01689-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He Z, Wang S, Shao Y et al (2019) Ras Downstream Effector GGCT Alleviates Oncogenic Stress. iScience 19:256–266. https://doi.org/10.1016/j.isci.2019.07.036

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moreno-Sánchez R, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2017) Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med 112:149–161. https://doi.org/10.1016/j.freeradbiomed.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  22. Shearn CT, Fritz KS, Shearn AH et al (2016) Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice. Redox Biol 7:68–77. https://doi.org/10.1016/j.redox.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Wang L, Zang Q et al (2021) Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death Dis 12(3):277. https://doi.org/10.1038/s41419-021-03543-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 63:207–221. https://doi.org/10.1016/j.freeradbiomed.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao M, Chen R, Yang Y et al (2022) Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm Sin B 12(2):678–691. https://doi.org/10.1016/j.apsb.2021.09.015

    Article  CAS  PubMed  Google Scholar 

  26. Lu R, Wang J, Ren Z et al (2019) A Model System for Studying the DNMT3A Hotspot Mutation (DNMT3A(R882)) Demonstrates a Causal Relationship between Its Dominant-Negative Effect and Leukemogenesis. Cancer Res 79(14):3583–3594. https://doi.org/10.1158/0008-5472.Can-18-3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daver N, Schlenk RF, Russell NH et al (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakakibara K, Saito N, Sato T et al (2011) CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118(14):3922–3931. https://doi.org/10.1182/blood-2011-01-333138

    Article  CAS  PubMed  Google Scholar 

  29. Yu H, Wu S, Liu S et al (2022) Venetoclax enhances DNA damage induced by XPO1 inhibitors: A novel mechanism underlying the synergistic antileukaemic effect in acute myeloid leukaemia. J Cell Mol Med 26(9):2646–2657. https://doi.org/10.1111/jcmm.17274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ranganathan P, Kashyap T, Yu X et al (2016) XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIα to the Nucleus. Clinical cancer research : an official journal of the American Association for. Cancer Res 22(24):6142–6152. https://doi.org/10.1158/1078-0432.Ccr-15-2885

    Article  CAS  Google Scholar 

  31. Kashyap T, Argueta C, Unger T et al (2018) Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 9(56):30773–30786. https://doi.org/10.18632/oncotarget.25637

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jeong M, Park HJ, Celik H et al (2018) Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo. Cell Rep 23(1):1–10. https://doi.org/10.1016/j.celrep.2018.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glass JL, Hassane D, Wouters BJ et al (2017) Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discov 7(8):868–883. https://doi.org/10.1158/2159-8290.Cd-16-1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Venugopal K, Feng Y, Nowialis P et al (2022) DNMT3A Harboring Leukemia-Associated Mutations Directs Sensitivity to DNA Damage at Replication Forks. Clinical cancer research : an official journal of the American Association for. Cancer Res 28(4):756–769. https://doi.org/10.1158/1078-0432.Ccr-21-2863

    Article  CAS  Google Scholar 

  35. Qu Y, Lennartsson A, Gaidzik VI et al (2014) Differential methylation in CN-AML preferentially targets non-CGI regions and is dictated by DNMT3A mutational status and associated with predominant hypomethylation of HOX genes. Epigenetics 9(8):1108–1119. https://doi.org/10.4161/epi.29315

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferreira HJ, Heyn H, Vizoso M et al (2016) DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia. Oncogene 35(23):3079–3082. https://doi.org/10.1038/onc.2015.359

    Article  CAS  PubMed  Google Scholar 

  37. Martínez-Reyes I, Chandel NS (2021) Cancer metabolism: looking forward. Nat Rev Cancer 21(10):669–680. https://doi.org/10.1038/s41568-021-00378-6

    Article  CAS  PubMed  Google Scholar 

  38. Sharma H (2018) Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer. Curr Top Med Chem 18(6):505–524. https://doi.org/10.2174/1568026618666180518091144

    Article  CAS  PubMed  Google Scholar 

  39. Subedi A, Liu Q, Ayyathan DM et al (2021) Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell 28(10):1851–67.e8. https://doi.org/10.1016/j.stem.2021.06.004

    Article  CAS  PubMed  Google Scholar 

  40. Pei S, Minhajuddin M, Callahan KP et al (2013) Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem 288(47):33542–33558. https://doi.org/10.1074/jbc.M113.511170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu XA, Lu M, Luo Y et al (2020) A cancer-specific activatable theranostic nanodrug for enhanced therapeutic efficacy via amplification of oxidative stress. Theranostics 10(1):371–383. https://doi.org/10.7150/thno.39412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng X, Xu HD, Ran HH et al (2021) Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano 15(5):8039–8068. https://doi.org/10.1021/acsnano.1c00498

    Article  CAS  PubMed  Google Scholar 

  43. Habermann KJ, Grünewald L, Van Wijk S et al (2017) Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis 8(10):e3067. https://doi.org/10.1038/cddis.2017.412

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tanaka Y, Komatsu T, Shigemi H et al (2014) BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthionine sulfoximine. BMC Cancer 14:27. https://doi.org/10.1186/1471-2407-14-27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schoeneberger H, Belz K, Schenk B et al (2015) Impairment of antioxidant defense via glutathione depletion sensitizes acute lymphoblastic leukemia cells for Smac mimetic-induced cell death. Oncogene 34(31):4032–4043. https://doi.org/10.1038/onc.2014.338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China [82270177] and Hubei Chen Xiaoping science and Technology Development Foundation [CXPJJH12000009-112].

Institutional review board

The study was conducted by the Declaration of Helsinki, and approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (TJIRB20230228 and 2023.2.10). The animal study protocol was approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology ([2022]IACUC Number: 3300 and 2022.2.1).

Funding

This work was supported by the National Natural Science Foundation of China [82270177] and Hubei Chen Xiaoping Science and Technology Development Foundation [CXPJJH12000009-112].

Author information

Authors and Affiliations

Authors

Contributions

XC, DL and XW conceptualized this study. XC completed data curation. YL, HL, and XW con-ducted the investigation. XC, DL, YL, YQ, and XW completed the methodology. DL was re-sponsible for project administration. MX and YW were in charge of the software. XC wrote the original draft. DL wrote, reviewed, and edited the manuscript. All authors contributed to the ar-ticle and approved the submitted version.

Corresponding authors

Correspondence to Xiong Wang or Dengju Li.

Ethics declarations

Informed consent

Informed consent was obtained from all subjects involved in the study. Written informed consent has been obtained from the patient(s) to publish this paper.

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary materials

ESM 1

(DOCX 1166 kb)

ESM 2

Figure S1: Differential genes expression analysis after selinexor treatment. (PDF 367 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Liu, Y., Li, H. et al. XPO1 inhibition displays anti-leukemia efficacy against DNMT3A-mutant acute myeloid leukemia via downregulating glutathione pathway. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05706-y

Keywords

Navigation