Skip to main content

Advertisement

Log in

A comparative study of platelet storage lesion in platelet-rich plasma under cryopreservation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Platelet-rich plasma (PRP) has significant potential for various applications and holds clinical value in regenerative medicine. Cryopreservation is used to extend the preservation period of PRP, facilitating its clinical application. However, the potential negative effects of long-term cryopreservation on platelet storage lesion are still uncertain. In this study, PRP was stored at − 30 °C or − 80 °C. Platelet count, apoptosis, reactive oxygen species (ROS) content, and CD62P expression were assessed on the 14th and 28th days. The study also evaluated platelet mitochondria morphology and function, serotonin (5-HT) secretion by platelets, and the inflammatory activating effect of cryopreserved platelets in PRP. The results showed that there were no significant differences in platelet count, the content of 5-HT, and inflammatory effects between fresh PRP and PRP cryopreserved at both − 30 °C and − 80 °C. However, there was an increase in ROS level, apoptosis, and CD62P level after cryopreservation at both temperatures. Additionally, the levels of ROS, apoptosis, and CD62P in platelets were similar after storage at − 30 °C and − 80 °C. The main difference observed was that the morphology and function of mitochondria were severely damaged after storage at − 30 °C, while they were less affected at − 80 °C. Based on these findings, it can be concluded that storing PRP at − 80 °C is more suitable for achieving a better therapeutic effect in clinical applications, but cryopreservation could not replace the current standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated during this study are included in this published article. Requests for materials should be addressed to the corresponding author.

References

  1. Pelletier MH, Malhotra A, Brighton T, Walsh WR, Lindeman R (2013) Platelet function and constituents of platelet rich plasma. Int J Sports Med 34(1):74–80. https://doi.org/10.1055/s-0032-1316319

    Article  CAS  PubMed  Google Scholar 

  2. Andia I, Abate M (2013) Platelet-rich plasma: underlying biology and clinical correlates. Regen Med 8(5):645–658. https://doi.org/10.2217/rme.13.59

    Article  CAS  PubMed  Google Scholar 

  3. Shin MK, Lee JW, Kim YI, Kim YO, Seok H, Kim NI (2014) The effects of platelet-rich clot releasate on the expression of MMP-1 and type I collagen in human adult dermal fibroblasts: PRP is a stronger MMP-1 stimulator. Mol Biol Rep 41(1):3–8. https://doi.org/10.1007/s11033-013-2718-9

    Article  CAS  PubMed  Google Scholar 

  4. Anitua E, Pino A, Orive G (2016) Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity. J Wound Care 25(11):680–687. https://doi.org/10.12968/jowc.2016.25.11.680

    Article  CAS  PubMed  Google Scholar 

  5. Guszczyn T, Surażyński A, Zaręba I, Rysiak E, Popko J, Pałka J (2017) Differential effect of platelet-rich plasma fractions on β1-integrin signaling, collagen biosynthesis, and prolidase activity in human skin fibroblasts. Drug Des Devel Ther 11:1849–1857. https://doi.org/10.2147/dddt.S135949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiga Y, Kubota G, Orita S, Inage K, Kamoda H, Yamashita M, Iseki T, Ito M, Yamauchi K, Eguchi Y, Sainoh T, Sato J, Fujimoto K, Abe K, Kanamoto H, Inoue M, Kinoshita H, Furuya T, Koda M, Aoki Y, Toyone T, Takahashi K, Ohtori S (2017) Freeze-dried human platelet-rich plasma retains activation and growth factor expression after an eight-week preservation period. Asian Spine J 11(3):329–336. https://doi.org/10.4184/asj.2017.11.3.329

    Article  PubMed  PubMed Central  Google Scholar 

  7. Everts P, Onishi K, Jayaram P, Lana JF, Mautner K (2020) Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 21(20):7794. https://doi.org/10.3390/ijms21207794

  8. Sharara FI, Lelea LL, Rahman S, Klebanoff JS, Moawad GN (2021) A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J Assist Reprod Genet 38(5):1003–1012. https://doi.org/10.1007/s10815-021-02146-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, Kraus VB, Lohmander LS, Abbott JH, Bhandari M, Blanco FJ, Espinosa R, Haugen IK, Lin J, Mandl LA, Moilanen E, Nakamura N, Snyder-Mackler L, Trojian T, Underwood M, McAlindon TE (2019) OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 27(11):1578–1589. https://doi.org/10.1016/j.joca.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  10. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, Callahan L, Copenhaver C, Dodge C, Felson D, Gellar K, Harvey WF, Hawker G, Herzig E, Kwoh CK, Nelson AE, Samuels J, Scanzello C, White D, Wise B, Altman RD, DiRenzo D, Fontanarosa J, Giradi G, Ishimori M, Misra D, Shah AA, Shmagel AK, Thoma LM, Turgunbaev M, Turner AS, Reston J (2020) 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol 72(2):220–233. https://doi.org/10.1002/art.41142

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bennell KL, Paterson KL, Metcalf BR, Duong V, Eyles J, Kasza J, Wang Y, Cicuttini F, Buchbinder R, Forbes A, Harris A, Yu SP, Connell D, Linklater J, Wang BH, Oo WM, Hunter DJ (2021) Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis: the RESTORE randomized clinical trial. JAMA 326(20):2021–2030. https://doi.org/10.1001/jama.2021.19415

    Article  CAS  PubMed  Google Scholar 

  12.  Peng YN, Chen JL, Hsu CC, Chen CPC, Suputtitada A (2022) Intra-articular leukocyte-rich platelet-rich plasma versus intra-articular hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis of 14 randomized controlled trials. Pharmaceuticals (Basel) 15(8):974. https://doi.org/10.3390/ph15080974

  13. Paget LDA, Reurink G, de Vos RJ, Weir A, Moen MH, Bierma-Zeinstra SMA, Stufkens SAS, Goedegebuure S, Krips R, Maas M, Meuffels DE, Nolte PA, Runhaar J, Kerkhoffs G, Tol JL (2023) Platelet-rich plasma injections for the treatment of ankle osteoarthritis. Am J Sports Med 51(10):2625–2634. https://doi.org/10.1177/03635465231182438

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verma R, Kumar S, Garg P, Verma YK (2023) Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 24(2):285–306. https://doi.org/10.1007/s10561-022-10039-z

    Article  PubMed  Google Scholar 

  15. Tischer T, Bode G, Buhs M, Marquass B, Nehrer S, Vogt S, Zinser W, Angele P, Spahn G, Welsch GH, Niemeyer P, Madry H (2020) Platelet-rich plasma (PRP) as therapy for cartilage, tendon and muscle damage - German working group position statement. J Exp Orthop 7(1):64. https://doi.org/10.1186/s40634-020-00282-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JI, Bae HC, Park HJ, Lee MC, Han HS (2020) Effect of storage conditions and activation on growth factor concentration in platelet-rich plasma. J Orthop Res 38(4):777–784. https://doi.org/10.1002/jor.24520

    Article  CAS  PubMed  Google Scholar 

  17. Lai H, Chen G, Zhang W, Wu G, Xia Z (2023) Research trends on platelet-rich plasma in the treatment of wounds during 2002–2021: a 20-year bibliometric analysis. Int Wound J 20(6):1882–1892. https://doi.org/10.1111/iwj.14047

    Article  PubMed  Google Scholar 

  18. Kikuchi N, Yoshioka T, Taniguchi Y, Sugaya H, Arai N, Kanamori A, Yamazaki M (2019) Optimization of leukocyte-poor platelet-rich plasma preparation: a validation study of leukocyte-poor platelet-rich plasma obtained using different preparer, storage, and activation methods. J Exp Orthop 6(1):24. https://doi.org/10.1186/s40634-019-0190-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kinoshita H, Orita S, Inage K, Fujimoto K, Shiga Y, Abe K, Inoue M, Norimoto M, Umimura T, Ishii T, Yonemoto T, Kamoda H, Tsukanishi T, Suzuki M, Hirosawa N, Akazawa T, Ohtori S (2020) Freeze-dried platelet-rich plasma induces osteoblast proliferation via platelet-derived growth factor receptor-mediated signal transduction. Asian Spine J 14(1):1–8. https://doi.org/10.31616/asj.2019.0048

    Article  PubMed  Google Scholar 

  20. Whitney KE, Dornan GJ, King J, Chahla J, Evans TA, Philippon MJ, LaPrade RF, Huard J (2021) The effect of a single freeze-thaw cycle on matrix metalloproteinases in different human platelet-rich plasma formulations. Biomedicines 9(10):1403. https://doi.org/10.3390/biomedicines9101403

  21. White JG, Hagert K, Nipper JH, Rao GH (1980) Functional platelets after storage in vitro for 15–21 days. Am J Pathol 101(3):613–634

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy S, Gardner FH (1969) Effect of storage temperature on maintenance of platelet viability–deleterious effect of refrigerated storage. N Engl J Med 280(20):1094–1098. https://doi.org/10.1056/nejm196905152802004

    Article  CAS  PubMed  Google Scholar 

  23. Beitia M, Delgado D, Mercader J, Gimeno I, Espregueira-Mendes J, Aizpurua B, Sánchez M (2023) The effect of short-term cryopreservation on the properties and functionality of platelet-rich plasma. Platelets 34(1):2210243. https://doi.org/10.1080/09537104.2023.2210243

    Article  CAS  PubMed  Google Scholar 

  24. Cecerska-Heryć E, Goszka M, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Dołęgowska B (2022) Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev 64:84–94. https://doi.org/10.1016/j.cytogfr.2021.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Jin P, Pan Q, Lin Y, Dong Y, Zhu J, Liu T, Zhu W, Cheng B (2023) Platelets facilitate wound healing by mitochondrial transfer and reducing oxidative stress in endothelial cells. Oxid Med Cell Longev 2023:2345279. https://doi.org/10.1155/2023/2345279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim S, Kim Y, Yu SH, Lee SE, Park JH, Cho G, Choi C, Han K, Kim CH, Kang YC (2022) Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets 34(1):2151996. https://doi.org/10.1080/09537104.2022.2151996

    Article  CAS  PubMed  Google Scholar 

  27. Mammadova-Bach E, Mauler M, Braun A, Duerschmied D (2018) Autocrine and paracrine regulatory functions of platelet serotonin. Platelets 29(6):541–548. https://doi.org/10.1080/09537104.2018.1478072

    Article  CAS  PubMed  Google Scholar 

  28. Mezger M, Nording H, Sauter R, Graf T, Heim C, von Bubnoff N, Ensminger SM, Langer HF (2019) Platelets and immune responses during thromboinflammation. Front Immunol 10:1731. https://doi.org/10.3389/fimmu.2019.01731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roffi A, Filardo G, Assirelli E, Cavallo C, Cenacchi A, Facchini A, Grigolo B, Kon E, Mariani E, Pratelli L, Pulsatelli L, Marcacci M (2014) Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synoviocytes? Biomed Res Int 2014:692913. https://doi.org/10.1155/2014/692913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukuda K, Kuroda T, Tamura N, Mita H, Kasashima Y (2020) Optimal activation methods for maximizing the concentrations of platelet-derived growth factor-BB and transforming growth factor-β1 in equine platelet-rich plasma. J Vet Med Sci 82(10):1472–1479. https://doi.org/10.1292/jvms.20-0167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anitua E, de la Fuente M, Muruzábal F, Merayo-Lloves J (2021) Stability of freeze-dried plasma rich in growth factors eye drops stored for 3 months at different temperature conditions. Eur J Ophthalmol 31(2):354–360. https://doi.org/10.1177/1120672120913035

    Article  PubMed  Google Scholar 

  32. Melnikov DV, Kirillova KA, Zakharenko AS, Sinelnikov MY, Ragimov AA, Istranov AL, Startseva OI (2021) Effect of cryo-processing on platelet-rich autoplasma preparations. Sovrem Tekhnologii Med 12(6):54–60. https://doi.org/10.17691/stm2020.12.6.07

    Article  CAS  PubMed  Google Scholar 

  33. Green ID, Pinello N, Song R, Lee Q, Halstead JM, Kwok CT, Wong ACH, Nair SS, Clark SJ, Roediger B, Schmitz U, Larance M, Hayashi R, Rasko JEJ, Wong JJ (2020) Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Res 48(12):6513–6529. https://doi.org/10.1093/nar/gkaa435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Masselli E, Pozzi G, Vaccarezza M, Mirandola P, Galli D, Vitale M, Carubbi C, Gobbi G (2020) ROS in platelet biology: functional aspects and methodological insights. Int J Mol Sci 21(14):4866. https://doi.org/10.3390/ijms21144866

  35. Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS, Chang TS (2015) Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med 83:41–53. https://doi.org/10.1016/j.freeradbiomed.2015.01.018

  36. Delaney MK, Kim K, Estevez B, Xu Z, Stojanovic-Terpo A, Shen B, Ushio-Fukai M, Cho J, Du X (2016) Differential roles of the NADPH-oxidase 1 and 2 in platelet activation and thrombosis. Arterioscler Thromb Vasc Biol 36(5):846–854. https://doi.org/10.1161/atvbaha.116.307308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghasemzadeh M, Hosseini E, Roudsari ZO, Zadkhak P (2018) Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: does endogenous ROS generation downregulate platelet adhesive function? Thromb Res 163:153–161. https://doi.org/10.1016/j.thromres.2018.01.048

    Article  CAS  PubMed  Google Scholar 

  38. Hosseini E, Ghasemzadeh M, Nassaji F, Jamaat ZP (2017) GPVI modulation during platelet activation and storage: its expression levels and ectodomain shedding compared to markers of platelet storage lesion. Platelets 28(5):498–508. https://doi.org/10.1080/09537104.2016.1235692

    Article  CAS  PubMed  Google Scholar 

  39. Six KR, Compernolle V, Feys HB (2020) Platelet biochemistry and morphology after cryopreservation. Int J Mol Sci 21(3):935. https://doi.org/10.3390/ijms21030935

  40. Marks DC, Johnson L (2019) Assays for phenotypic and functional characterization of cryopreserved platelets. Platelets 30(1):48–55. https://doi.org/10.1080/09537104.2018.1514108

    Article  CAS  PubMed  Google Scholar 

  41. Levoux J, Prola A, Lafuste P, Gervais M, Chevallier N, Koumaiha Z, Kefi K, Braud L, Schmitt A, Yacia A, Schirmann A, Hersant B, Sid-Ahmed M, Ben Larbi S, Komrskova K, Rohlena J, Relaix F, Neuzil J, Rodriguez AM (2021) Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab 33(3):688–690. https://doi.org/10.1016/j.cmet.2021.02.003

    Article  PubMed  Google Scholar 

  42. Ma H, Jiang T, Tang W, Ma Z, Pu K, Xu F, Chang H, Zhao G, Gao W, Li Y, Wang Q (2020) Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin Sci 134(16):2161–2175. https://doi.org/10.1042/cs20200530

    Article  CAS  Google Scholar 

  43. Shi C, Guo H, Liu X (2021) Platelet mitochondria transplantation rescues hypoxia/reoxygenation-induced mitochondrial dysfunction and neuronal cell death involving the FUNDC2/PIP3/Akt/FOXO3a axis. Cell Transplant 30:9636897211024210. https://doi.org/10.1177/09636897211024210

    Article  PubMed  Google Scholar 

  44. Hayashi T, Tanaka S, Hori Y, Hirayama F, Sato EF, Inoue M (2011) Role of mitochondria in the maintenance of platelet function during in vitro storage. Transfus Med 21(3):166–174. https://doi.org/10.1111/j.1365-3148.2010.01065.x

    Article  CAS  PubMed  Google Scholar 

  45. Bynum JA, Meledeo MA, Getz TM, Rodriguez AC, Aden JK, Cap AP, Pidcoke HF (2016) Bioenergetic profiling of platelet mitochondria during storage: 4°C storage extends platelet mitochondrial function and viability. Transfusion 56(Suppl 1):S76-84. https://doi.org/10.1111/trf.13337

    Article  CAS  PubMed  Google Scholar 

  46. Zhao J, Xu B, Chen G, Zhang Y, Wang Q, Zhao L, Zhou H (2019) Cryopreserved platelets augment the inflammatory response: role of phosphatidylserine- and P-selectin-mediated platelet phagocytosis in macrophages. Transfusion 59(5):1799–1808. https://doi.org/10.1111/trf.15183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all blood volunteers for their participation in this study. We thank the Electron Microscopy Center of Fourth Military Medical University for this study.

Funding

The present work was supported by the National Natural Science Foundation of China (No. 82170226).

Author information

Authors and Affiliations

Authors

Contributions

ED, YTC, and WTW performed the experiments and analyzed and interpreted the data. YTC and LLZ drafted the manuscript. NA and WY contributed reagents. YZC and JY conceived and designed the experiments. YZC and YTC revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yaozhen Chen.

Ethics declarations

Ethical approval

All authors’ consent for the use of biospecimens was obtained in accordance with the Declaration of Helsinki. The experimental procedures were performed according to the requirements of the Ethics Committee of Xijing Hospital.

Consent to participate

Informed consent was obtained from all blood volunteers for being included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Dang, Yutong Chen, and Wenting Wang contributed equally as the first authors. Yaozhen Chen and Jing Yi contributed equally as the senior authors.

Supplementary information

Below is the link to the electronic supplementary material.

277_2023_5580_MOESM1_ESM.tif

Supplementary file1 (TIF 8288 KB) Detection of the count of platelets in PRP under different storage temperature and storge time. (A) A schematic diagram of PRP treatment. (B) The count of platelets in PRP on 0 day, 14th day, 28th day at -30℃ (N = 5). (C) The count of platelets in PRP on 0 day, 14th day, 28th day at -80℃ (N = 5). (D) The count of platelets in PRP at -30℃ and -80℃ on 14th day (N = 5). (E) The count of platelets in PRP at -30℃ and -80℃ on 28th day (N = 5). ns, no statistical significance. PLT: platelets in PRP; 0d: platelets in fresh PRP, as control group; 14d: platelets in PRP were stored on the 14th day; 28d: platelets in PRP were stored on the 28th day; -30℃: platelets in PRP stored at -30℃; -80℃: platelets in PRP stored at -80℃.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, E., Chen, Y., Wang, W. et al. A comparative study of platelet storage lesion in platelet-rich plasma under cryopreservation. Ann Hematol 103, 631–643 (2024). https://doi.org/10.1007/s00277-023-05580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05580-0

Keywords

Navigation