Skip to main content
Log in

B cell-activating factor is involved in thrombocytopenia in patients with liver cirrhosis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Liver cirrhosis (LC) involves B cells that produce anti-glycoprotein (GP) IIb/IIIa antibodies, found in primary immune thrombocytopenia (ITP). The role of autoimmunity in the pathology of thrombocytopenia in LC was investigated using 25 LC patients with thrombocytopenia, 18 ITP patients, and 30 healthy controls. Anti-GPIIb/IIIa antibody-producing B cells were quantified using enzyme-linked immunospot assay. Platelet-associated and plasma anti-GPIIb/IIIa antibody, plasma B cell-activating factor (BAFF), and a proliferation-inducing ligand (APRIL) levels were measured using enzyme-linked immunosorbent assay. B cell subset fractions and regulatory T cells (Tregs) were quantified using flow cytometry.

The number of anti-GPIIb/IIIa antibody-producing B cells was significantly higher in LC patients than in ITP patients and healthy controls (both p < 0.001). Platelet-associated anti-GPIIb/IIIa antibodies were significantly higher in LC patients than in ITP patients and healthy controls (p = 0.002, p < 0.001, respectively). BAFF levels were significantly higher in LC patients than in ITP patients and healthy controls (p = 0.001 and p < 0.001, respectively), and APRIL levels were significantly higher in LC patients than in healthy controls (p < 0.001). Anti-GPIIb/IIIa antibody-producing B cells and platelet-associated anti-GPIIb/IIIa antibodies were positively correlated with BAFF levels in LC patients. LC patients had more naïve B cells and plasmablasts than healthy controls (p = 0.005, p = 0.03, respectively); plasmablasts were positively correlated with BAFF levels. LC patients had similar Tregs levels as ITP patients and healthy controls. Therefore, excessive BAFF production in LC patients with thrombocytopenia is likely associated with autoimmune B cell response, inducing anti-GPIIb/IIIa antibody production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Violi F, Basili S, Raparelli V, Chowdary P, Gatt A, Burroughs AK (2011) Patients with liver cirrhosis suffer from primary haemostatic defects? Fact or fiction? J Hepatol 55:1415–1427. https://doi.org/10.1016/j.jhep.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  2. Peck-Radosavljevic M (2017) Thrombocytopenia in chronic liver disease. Liver Int 37:778–793. https://doi.org/10.1111/liv.13317

    Article  PubMed  Google Scholar 

  3. Saab S, Brown RS Jr (2019) Management of thrombocytopenia in patients with chronic liver disease. Dig Dis Sci 64:2757–2768. https://doi.org/10.1007/s10620-019-05615-5

    Article  PubMed  Google Scholar 

  4. Kajihara M, Kato S, Okazaki Y, Kawakami Y, Ishii H, Ikeda Y, Kuwana M (2003) A role of autoantibody-mediated platelet destruction in thrombocytopenia in patients with cirrhosis. Hepatology 37:1267–1276. https://doi.org/10.1053/jhep.2003.50209

    Article  CAS  PubMed  Google Scholar 

  5. Wada N, Uojima H, Satoh T, Okina S, Iwasaki S, Shao X, Takiguchi H, Arase Y, Itokawa N, Atsukawa M, Miyazaki K, Hidaka H, Kako M, Kagawa T, Iwakiri K, Horie R, Suzuki T, Koizumi W (2021) Impact of Anti-GPIIb/IIIa antibody-producing B cells as a predictor of the response to lusutrombopag in thrombocytopenic patients with liver disease. Dig Dis 39:234–242. https://doi.org/10.1159/000510692

    Article  PubMed  Google Scholar 

  6. Kuwana M, Kaburaki J, Ikeda Y (1998) Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura. Role in production of anti-platelet autoantibody. J Clin Invest 102:1393–1402. https://doi.org/10.1172/JCI4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kistangari G, McCrae KR (2013) Immune thrombocytopenia. Hematol Oncol Clin North Am 27:495–520. https://doi.org/10.1016/j.hoc.2013.03.001

    Article  PubMed  Google Scholar 

  8. Zhu XJ, Shi Y, Sun JZ, Shan NN, Peng J, Guo CS, Qin P, Hou M (2009) High-dose dexamethasone inhibits BAFF expression in patients with immune thrombocytopenia. J Clin Immunol 29:603–610. https://doi.org/10.1007/s10875-009-9303-y

    Article  CAS  PubMed  Google Scholar 

  9. Min YN, Wang CY, Li XX, Hou Y, Qiu JH, Ma J, Shao LL, Zhang X, Wang YW, Peng J, Hou M, Shi Y (2016) Participation of B-cell-activating factor receptors in the pathogenesis of immune thrombocytopenia. J Thromb Haemost 14:559–571. https://doi.org/10.1111/jth.13246

    Article  CAS  PubMed  Google Scholar 

  10. Kamhieh-Milz J, Ghosoun N, Sterzer V, Salama A (2018) Effect of glucocorticoid treatment on BAFF and APRIL expression in patients with immune thrombocytopenia (ITP). Clin Immunol 188:74–80. https://doi.org/10.1016/j.clim.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  11. Hao YF, Bi H, Li HY, Yin LM, Yu JX, Tao W, Mu HL, Yang RC, Zhou ZP, Tai WL (2021) Aberrant expression of a proliferation-inducing ligand underlies autoimmune mechanisms in immune thrombocytopenia. J Immunol Res 3676942 https://doi.org/10.1155/2021/3676942

  12. Nishimoto T, Kuwana M (2013) CD4+CD25+FoxP3+ regulatory T cells in the pathophysiology of immune thrombocytopenia. Semin Hematol 50:S43-49. https://doi.org/10.1053/j.seminhematol.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  13. Kuwana M, Okazaki Y, Kaburaki J, Ikeda Y (2003) Detection of circulating B cells secreting platelet-specific autoantibody is useful in the diagnosis of autoimmune thrombocytopenia. Am J Med 114:322–325. https://doi.org/10.1016/s0002-9343(02)01522-x

    Article  PubMed  Google Scholar 

  14. Satoh T, Pandey JP, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y, Kuwana M (2004) Single nucleotide polymorphisms of the inflammatory cytokine genes in adults with chronic immune thrombocytopenic purpura. Br J Haematol 124:796–801. https://doi.org/10.1111/j.1365-2141.2004.04843.x

    Article  CAS  PubMed  Google Scholar 

  15. Kuwana M, Okazaki Y, Satoh T, Asahi A, Kajihara M, Ikeda Y (2005) Initial laboratory findings useful for predicting the diagnosis of idiopathic thrombocytopenic purpura. Am J Med 118:1026–1033. https://doi.org/10.1016/j.amjmed.2004.12.027

    Article  PubMed  Google Scholar 

  16. Szabó K, Papp G, Szántó A, Tarr T, Zeher M (2016) A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol 183:76–89. https://doi.org/10.1111/cei.12703

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Rodriguez L, Riancho-Zarrabeitia L, Calvo-Alén J, López-Hoyos M, Martínez-Taboada V (2018) Peripheral B-cell subset distribution in primary antiphospholipid syndrome. Int J Mol Sci 19:589. https://doi.org/10.3390/ijms19020589

    Article  CAS  PubMed Central  Google Scholar 

  18. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z (2011) Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev 10:744–755. https://doi.org/10.1016/j.autrev.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  19. Huang CE, Chen WM, Wu YY, Shen CH, Hsu CC, Li CP, Chen MC, Chang JJ, Chen YY, Lu CH, Shi CS, Chen CC (2021) Comparison of antiplatelet antibody profiles between hepatitis C virus-associated immune thrombocytopenia and primary immune thrombocytopenia. Platelets 32:1043–1050. https://doi.org/10.1080/09537104.2020.1820975

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Nardi MA, Borkowsky W, Li Z, Karpatkin S (2009) Role of molecular mimicry of hepatitis C virus protein with platelet GPIIIa in hepatitis C-related immunologic thrombocytopenia. Blood 113:4086–4093. https://doi.org/10.1182/blood-2008-09-181073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Satoh T, Kuwana M (2017) Differential Diagnosis: Secondary ITP. In: Ishida Y, Tomiyama Y, editors. Autoimmune thrombocytopenia. Singapore, Springer Nature; p. 97–105.

  22. Kuwana M, Okazaki Y, Ikeda Y (2014) Detection of circulating B cells producing anti-GPIb autoantibodies in patients with immune thrombocytopenia. PLoS ONE 9:e86943. https://doi.org/10.1371/journal.pone.0086943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mackay F, Browning JL (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475. https://doi.org/10.1038/nri844

    Article  CAS  PubMed  Google Scholar 

  24. Dalakas MC (2008) Invited Article: inhibition of B cell functions: implications for neurology. Neurology 70:2252–2260. https://doi.org/10.1212/01.wnl.0000313840.27060.bf

    Article  CAS  PubMed  Google Scholar 

  25. La Cava A (2013) Targeting the BLyS-APRIL signaling pathway in SLE. Clin Immunol 148:322–327. https://doi.org/10.1016/j.clim.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Zhu XJ, Shi Y, Peng J, Guo CS, Shan NN, Qin P, Ji XB, Hou M (2009) The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood 114:5362–5367. https://doi.org/10.1182/blood-2009-05-217513

    Article  CAS  PubMed  Google Scholar 

  27. Doi H, Hayashi E, Arai J, Tojo M, Morikawa K, Eguchi J, Ito T, Kanto T, Kaplan DE, Yoshida H (2018) Enhanced B-cell differentiation driven by advanced cirrhosis resulting in hyperglobulinemia. J Gastroenterol Hepatol 33:1667–1676. https://doi.org/10.1111/jgh.14123

    Article  CAS  Google Scholar 

  28. Martínez-Esparza M, Tristán-Manzano M, Ruiz-Alcaraz AJ, García-Peñarrubia P (2015) Inflammatory status in human hepatic cirrhosis. World J Gastroenterol 21:11522–11541. https://doi.org/10.3748/wjg.v21.i41.11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czaja AJ (2022) Advancing biologic therapy for refractory autoimmune hepatitis. Dig Dis Sci. https://doi.org/10.1007/s10620-021-07378-4

    Article  PubMed  Google Scholar 

  30. Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A, Aranow C, Wellborne FR, Abud-Mendoza C, Hough DR, Pineda L, Migone TS, Zhong ZJ, Freimuth WW, Chatham WW (2012) Belimumab reduces autoantibody, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 64:2328–2337. https://doi.org/10.1002/art.34400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pontarini E, Fabris M, Quartuccio L, Cappeletti M, Calcaterra F, Roberto A, Curcio F, Mavilio D, Della Bella S, De Vita S (2015) Treatment with belimumab restores B cell subsets and their expression of B cell activating factor receptor in patients with primary Sjogren’s syndrome. Rheumatology 54:1429–1434. https://doi.org/10.1093/rheumatology/kev005

    Article  CAS  PubMed  Google Scholar 

  32. Meffre E, Wardemann H (2008) B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 20:632–638. https://doi.org/10.1016/j.coi.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  33. Chan H, Moore JC, Finch CN, Warkentin TE, Kelton JG (2003) The IgG subclasses of platelet-associated autoantibodies directed against platelet glycoproteins IIb/IIIa in patients with idiopathic thrombocytopenic purpura. Br J Haematol 122:818–824. https://doi.org/10.1046/j.1365-2141.2003.04509.x

    Article  CAS  PubMed  Google Scholar 

  34. Kuwana M, Okazaki Y, Kaburaki J, Kawakami Y, Ikeda Y (2002) Spleen is a primary site for activation of platelet-reactive T and B cells in patients with immune thrombocytopenic purpura. J Immunol 168:3675–3682. https://doi.org/10.4049/jimmunol.168.7.3675

    Article  CAS  PubMed  Google Scholar 

  35. Kuwana M, Iki S, Urabe A (2007) The role of autoantibody-producing plasma cells in immune thrombocytopenic purpura refractory to rituximab. Am J Hematol 82:846–848. https://doi.org/10.1002/ajh.20951

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Agematsu K, Ochs HD, Sugane K (2003) Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol 108:128–137. https://doi.org/10.1016/s1521-6616(03)00092-5

    Article  CAS  PubMed  Google Scholar 

  37. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202. https://doi.org/10.1126/science.1076071

    Article  CAS  PubMed  Google Scholar 

  38. Kuwana M, Okazaki Y, Ikeda Y (2009) Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost 7:322–329. https://doi.org/10.1111/j.1538-7836.2008.03161.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by JSPS KAKENHI (Grant Numbers 16K08973 and 19K08478); Kitasato University Research Grant for Young Researchers (grant number 2013, 2014, 2015); and Kitasato University School of Allied Health Sciences (Grants-in-Aid for Research Project, No. 2017–1014, 2018–1026, and 2019–1015).

Author information

Authors and Affiliations

Authors

Contributions

Satoh T., Takiguchi H., and Uojima H. designed the study. Satoh T., Takiguchi H., Tanaka C., and Yokoyama F. performed experiments and analyzed the data. Kubo M. and Kuwana M. offered technical support. Horie R. and Kuwana M. offered material support. Uojima H., Wada N., Miyazaki K., Hidaka H., Kusano C., and Horie R. collected clinical data. Satoh T. drafted the manuscript. All authors discussed and approved the final manuscript.

Corresponding author

Correspondence to Takashi Satoh.

Ethics declarations

Ethics approval

The study design was approved by the Institutional Review Boards at Kitasato University (B18-095). All subjects were in accordance with the Helsinki Declaration of 1975, as revised in 2008.

Consent to participate

All participants provided written informed consent.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Takiguchi, H., Uojima, H. et al. B cell-activating factor is involved in thrombocytopenia in patients with liver cirrhosis. Ann Hematol 101, 2433–2444 (2022). https://doi.org/10.1007/s00277-022-04973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04973-x

Keywords

Navigation