Skip to main content
Log in

Mechanisms of resistance to apoptosis in the human acute promyelocytic leukemia cell line NB4

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Current frontline therapies have improved overall survival in acute promyelocytic leukemia (APL) patients to exceptional rates; however, relapse is still a problem among high-risk and old patients. Therefore, the development of better and safer therapies continues to be a goal in the treatment of this disease. In the present work, we examined three different pathways that hinder cell death in the APL cell line NB4, shedding light on the mechanisms that underlie resistance to apoptosis in these cells and that might help provide them with a proliferative advantage. We found that the proteasome inhibitor MG-132 specifically induces in NB4 cells an Nrf2-mediated antioxidant response which counteracts mitochondria-dependent apoptosis induced by the lipophilic cation dequalinium. More importantly, we also demonstrated that high basal autophagy levels and the gain-of-function of mutant p53 are intrinsic mechanisms of resistance to apoptosis in this cell line. According to our results, the pharmacological inhibition of autophagy and p53 mutants are useful tools to explore resistance to apoptosis in APL and other types of cancer and could be the bases of new therapeutic approaches that improve the efficiency and allow dose reduction of the current treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rowley JD, Golomb HM, Dougherty C (1977) 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1:549–550

    Article  CAS  PubMed  Google Scholar 

  2. Sanz MA, Lo-Coco F (2011) Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol 29:495–503. doi:10.1200/JCO.2010.32.1067

    Article  PubMed  Google Scholar 

  3. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891. doi:10.1182/blood-2008-04-150250

    Article  CAS  PubMed  Google Scholar 

  4. Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70

    Article  CAS  PubMed  Google Scholar 

  5. Galeano E, Nieto E, Garcia-Perez AI, Delgado MD, Pinilla M, Sancho P (2005) Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death. Leuk Res 29:1201–1211. doi:10.1016/j.leukres.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  6. Sancho P, Galeano E, Nieto E, Delgado MD, Garcia-Perez AI (2007) Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leuk Res 31:969–978. doi:10.1016/j.leukres.2006.11.018

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Perez AI, Galeano E, Nieto E, Sancho P (2011) Dequalinium induces human leukemia cell death by affecting the redox balance. Leuk Res 35:1395–1401. doi:10.1016/j.leukres.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  8. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839. doi:10.1074/jbc.M301546200

    Article  CAS  PubMed  Google Scholar 

  9. Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231–239

    Article  CAS  Google Scholar 

  10. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104. doi:10.1002/mc.20465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Farnebo M, Bykov VJ, Wiman KG (2010) The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 396:85–89. doi:10.1016/j.bbrc.2010.02.152

    Article  CAS  PubMed  Google Scholar 

  12. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412. doi:10.1038/nrm2395

    Article  CAS  PubMed  Google Scholar 

  13. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130. doi:10.1038/nature07986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810

    Article  CAS  PubMed  Google Scholar 

  15. Kanno S, Higurashi A, Watanabe Y, Shouji A, Asou K, Ishikawa M (2004) Susceptibility to cytosine arabinoside (Ara-C)-induced cytotoxicity in human leukemia cell lines. Toxicol Lett 152:149–158. doi:10.1016/j.toxlet.2004.04.014

    CAS  PubMed  Google Scholar 

  16. World Health Organization (2013) International Agency for Research on Cancer (IARC) TP53 database. http://p53.iarc.fr/. Accessed 04/17 2013

  17. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  CAS  PubMed  Google Scholar 

  18. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C (2003) Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 100:8424–8429. doi:10.1073/pnas.1431692100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lubin DJ, Butler JS, Loh SN (2010) Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. J Mol Biol 395:705–716. doi:10.1016/j.jmb.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  20. Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485

    Article  CAS  PubMed  Google Scholar 

  21. Chan KT, Lung ML (2004) Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother Pharmacol 53:519–526. doi:10.1007/s00280-004-0767-4

    Article  CAS  PubMed  Google Scholar 

  22. Buganim Y, Kalo E, Brosh R, Besserglick H, Nachmany I, Rais Y, Stambolsky P, Tang X, Milyavsky M, Shats I, Kalis M, Goldfinger N, Rotter V (2006) Mutant p53 protects cells from 12-O-tetradecanoylphorbol-13-acetate-induced death by attenuating activating transcription factor 3 induction. Cancer Res 66:10750–10759. doi:10.1158/0008-5472.CAN-06-0916

    Article  CAS  PubMed  Google Scholar 

  23. Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A (2006) Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25:304–309. doi:10.1038/sj.onc.1209026

    CAS  PubMed  Google Scholar 

  24. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341. doi:10.1016/j. cell .2009.11.026

    Article  PubMed  Google Scholar 

  25. Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V (2011) Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ 18:271–281. doi:10.1038/cdd.2010.94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157

    CAS  PubMed  Google Scholar 

  27. Rizzo MG, Zepparoni A, Cristofanelli B, Scardigli R, Crescenzi M, Blandino G, Giuliacci S, Ferrari S, Soddu S, Sacchi A (1998) Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation. Br J Cancer 77:1429–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fleckenstein DS, Uphoff CC, Drexler HG, Quentmeier H (2002) Detection of p53 gene mutations by single strand conformational polymorphism (SSCP) in human acute myeloid leukemia-derived cell lines. Leuk Res 26:207–214

    Article  CAS  PubMed  Google Scholar 

  29. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758

    Article  CAS  PubMed  Google Scholar 

  30. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11:164–179. doi:10.1016/j.drup.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  31. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  32. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    CAS  PubMed  Google Scholar 

  33. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310. doi:10.1182/blood-2002-09-2975

    Article  CAS  PubMed  Google Scholar 

  34. Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C, Wu ZQ, Borad MJ, Frantzen M, Roussos E, Neeser J, Mikail A, Adams J, Sjak-Shie N, Vescio RA, Berenson JR (2003) The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 9:1136–1144

    CAS  PubMed  Google Scholar 

  35. Zhu H, Guo W, Zhang L, Wu S, Teraishi F, Davis JJ, Dong F, Fang B (2005) Proteasome inhibitors-mediated TRAIL resensitization and Bik accumulation. Cancer Biol Ther 4:781–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dai Y, Chen S, Wang L, Pei XY, Kramer LB, Dent P, Grant S (2011) Bortezomib interacts synergistically with belinostat in human acute myeloid leukaemia and acute lymphoblastic leukaemia cells in association with perturbation in NF-kappaB and Bim. Br J Haematol 153:222–235. doi:10.1111/j.1365-2141.2011.08591.x

  37. Lomonosova E, Ryerse J, Chinnadurai G (2009) BAX/BAK-independent mitoptosis during cell death induced by proteasome inhibition? Mol Cancer Res 7:1268–1284. doi:10.1158/1541-7786.MCR-08-0183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Seol DW (2011) p53-independent up-regulation of a TRAIL receptor DR5 by proteasome inhibitors: a mechanism for proteasome inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 416:222–225. doi:10.1016/j.bbrc.2011.11.053

    Article  CAS  PubMed  Google Scholar 

  39. Pandit B, Gartel AL (2011) Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. Am J Pathol 178:355–360. doi:10.1016/j.ajpath.2010.11.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kabore AF, Sun J, Hu X, McCrea K, Johnston JB, Gibson SB (2006) The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis 11:1175–1193. doi:10.1007/s10495-006-8048-9

    Article  CAS  PubMed  Google Scholar 

  41. Wang AH, Wei L, Chen L, Zhao SQ, Wu WL, Shen ZX, Li JM (2011) Synergistic effect of bortezomib and valproic acid treatment on the proliferation and apoptosis of acute myeloid leukemia and myelodysplastic syndrome cells. Ann Hematol 90:917–931. doi:10.1007/s00277-011-1175-6

    Article  CAS  PubMed  Google Scholar 

  42. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617. doi:10.1056/NEJMoa030288

    Article  CAS  PubMed  Google Scholar 

  43. Matondo M, Bousquet-Dubouch MP, Gallay N, Uttenweiler-Joseph S, Recher C, Payrastre B, Manenti S, Monsarrat B, Burlet-Schiltz O (2010) Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leuk Res 34:498–506. doi:10.1016/j.leukres.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  44. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O’Connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    Article  CAS  PubMed  Google Scholar 

  45. Cortes J, Thomas D, Koller C, Giles F, Estey E, Faderl S, Garcia-Manero G, McConkey D, Ruiz SL, Guerciolini R, Wright J, Kantarjian H (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10:3371–3376. doi:10.1158/1078-0432.CCR-03-0508

    Article  CAS  PubMed  Google Scholar 

  46. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  CAS  PubMed  Google Scholar 

  47. Zanotto-Filho A, Delgado-Canedo A, Schroder R, Becker M, Klamt F, Moreira JC (2010) The pharmacological NFkappaB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation. Cancer Lett 288:192–203. doi:10.1016/j.canlet.2009.06.038

    Article  CAS  PubMed  Google Scholar 

  48. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–197

    Article  PubMed  Google Scholar 

  49. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Chen F, Chang D, Goh M, Klibanov SA, Ljungman M (2000) Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 11:239–246

    CAS  PubMed  Google Scholar 

  51. Wente MN, Eibl G, Reber HA, Friess H, Buchler MW, Hines OJ (2005) The proteasome inhibitor MG132 induces apoptosis in human pancreatic cancer cells. Oncol Rep 14:1635–1638

    CAS  PubMed  Google Scholar 

  52. Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, Garcia-Manero G (2013) Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med 65C:750–764. doi:10.1016/j.freeradbiomed.2013.06.041

    Article  Google Scholar 

  53. Sahni SK, Rydkina E, Sahni A (2008) The proteasome inhibitor MG132 induces nuclear translocation of erythroid transcription factor Nrf2 and cyclooxygenase-2 expression in human vascular endothelial cells. Thromb Res 122:820–825. doi:10.1016/j.thromres.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  54. Dreger H, Westphal K, Wilck N, Baumann G, Stangl V, Stangl K, Meiners S (2010) Protection of vascular cells from oxidative stress by proteasome inhibition depends on Nrf2. Cardiovasc Res 85:395–403. doi:10.1093/cvr/cvp279

    Article  CAS  PubMed  Google Scholar 

  55. Hu Y, Lu W, Chen G, Zhang H, Jia Y, Wei Y, Yang H, Zhang W, Fiskus W, Bhalla K, Keating M, Huang P, Garcia-Manero G (2010) Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood 116:2732–2741. doi:10.1182/blood-2009-11-256354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Garcia-Manero G, Tambaro FP, Bekele NB, Yang H, Ravandi F, Jabbour E, Borthakur G, Kadia TM, Konopleva MY, Faderl S, Cortes JE, Brandt M, Hu Y, McCue D, Newsome WM, Pierce SR, de Lima M, Kantarjian HM (2012) Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol 30:2204–2210. doi:10.1200/JCO.2011.38.3265

    Article  CAS  PubMed  Google Scholar 

  57. Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR (1999) Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci U S A 96:8438–8442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Noskov SY, Wright JD, Lim C (2002) Long-range effects of mutating R248 to Q/W in the p53 core domain. J Phys Chem B 106:13047–13057. doi:10.1021/jp022140w

    Article  CAS  Google Scholar 

  59. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  CAS  PubMed  Google Scholar 

  60. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479. doi:10.1038/nchembio809

    Article  CAS  PubMed  Google Scholar 

  61. Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Shay M, Shetzer Y, Dekel E, Goldfinger N, Buganim Y, Stambolsky P, Goldstein I, Madar S, Rotter V (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578–5586. doi:10.1242/jcs.106815

    Article  CAS  PubMed  Google Scholar 

  62. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752. doi:10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  64. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040. doi:10.1128/MCB.25.3.1025-1040.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997. doi:10.1016/j.cell.2007.03.045

    Article  CAS  PubMed  Google Scholar 

  66. Zelenin AV (1966) Fluorescence microscopy of lysosomes and related structures in living cells. Nature 212:425–426

    Article  CAS  PubMed  Google Scholar 

  67. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    CAS  PubMed  Google Scholar 

  68. Erenpreisa J, Freivalds T, Roach H, Alston R (1997) Apoptotic cell nuclei favour aggregation and fluorescence quenching of DNA dyes. Histochem Cell Biol 108:67–75

    Article  CAS  PubMed  Google Scholar 

  69. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. doi:10.1093/emboj/19.21.5720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G (2008) Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 445:29–76. doi:10.1007/978-1-59745-157-4_3

    Article  CAS  PubMed  Google Scholar 

  71. Yang W, Monroe J, Zhang Y, George D, Bremer E, Li H (2006) Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells. Cancer Lett 243:217–227. doi:10.1016/j.canlet.2005.11.033

    Article  CAS  PubMed  Google Scholar 

  72. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. doi:10.2353/ajpath.2007.070188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Du Y, Yang D, Li L, Luo G, Li T, Fan X, Wang Q, Zhang X, Wang Y, Le W (2009) An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 5:663–675

    Article  CAS  PubMed  Google Scholar 

  74. Pigneux A, Mahon FX, Moreau-Gaudry F, Uhalde M, de Verneuil H, Lacombe F, Reiffers J, Milpied N, Praloran V, Belloc F (2007) Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther 6:603–611

    Article  CAS  PubMed  Google Scholar 

  75. Bang JH, Han ES, Lim I, Lee CS (2004) Differential response of MG132 cytotoxicity against small cell lung cancer cells to changes in cellular GSH contents. Biochem Pharmacol 68:659–666. doi:10.1016/j.bcp.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  76. Chen JJ, Chou CW, Chang YF, Chen CC (2008) Proteasome inhibitors enhance TRAIL-induced apoptosis through the intronic regulation of DR5: involvement of NF-kappa B and reactive oxygen species-mediated p53 activation. J Immunol 180:8030–8039

    Article  CAS  PubMed  Google Scholar 

  77. Henfling ME, Ramaekers FC, Schutte B (2004) Proteasomes act in the pre-mitochondrial signal transduction route towards roscovitine-induced apoptosis. Int J Oncol 25:1437–1446

    CAS  PubMed  Google Scholar 

  78. Sohn D, Totzke G, Essmann F, Schulze-Osthoff K, Levkau B, Janicke RU (2006) The proteasome is required for rapid initiation of death receptor-induced apoptosis. Mol Cell Biol 26:1967–1978. doi:10.1128/MCB.26.5.1967-1978.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Zhang L, Hu JJ, Gong F (2011) MG132 inhibition of proteasome blocks apoptosis induced by severe DNA damage. Cell Cycle 10:3515–3518. doi:10.4161/cc.10.20.17789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Nagy K, Petak I, Imre G, Barna G, Gezane-Csorba M, Sebestyen A, Houghton JA, Mihalik R, Kopper L (2005) Proteasome inhibitors abolish cell death downstream of caspase activation during anti-microtubule drug-induced apoptosis in leukemia cells. Anticancer Res 25:3321–3326

    CAS  PubMed  Google Scholar 

  81. Liu L, Yang C, Herzog C, Seth R, Kaushal GP (2010) Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity. Biochem Pharmacol 79:137–146. doi:10.1016/j.bcp.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  82. Rushworth SA, Bowles KM, MacEwan DJ (2011) High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res 71:1999–2009. doi:10.1158/0008-5472.CAN-10-3018

    Article  CAS  PubMed  Google Scholar 

  83. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood 120:5188–5198. doi:10.1182/blood-2012-04-422121

    Article  CAS  PubMed  Google Scholar 

  84. Bieler S, Meiners S, Stangl V, Pohl T, Stangl K (2009) Comprehensive proteomic and transcriptomic analysis reveals early induction of a protective anti-oxidative stress response by low-dose proteasome inhibition. Proteomics 9:3257–3267. doi:10.1002/pmic.200800927

    Article  CAS  PubMed  Google Scholar 

  85. Ren Y, Xie Y, Chai L, Wang S, Cheng M (2011) Autophagy modification augmented the treatment effects initiated by arsenic trioxide in NB4 cells. Med Oncol 28:231–236. doi:10.1007/s12032-010-9430-6

    Article  CAS  PubMed  Google Scholar 

  86. Trocoli A, Mathieu J, Priault M, Reiffers J, Souquere S, Pierron G, Besancon F, Djavaheri-Mergny M (2011) ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy 7:1108–1114. doi:10.4161/auto.7.10.16623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Fels DR, Ye J, Segan AT, Kridel SJ, Spiotto M, Olson M, Koong AC, Koumenis C (2008) Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 68:9323–9330. doi:10.1158/0008-5472.CAN-08-2873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Park HS, Jun do Y, Han CR, Woo HJ, Kim YH (2011) Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase p56lck in human Jurkat T cells. Biochem Pharmacol 82:1110–1125. doi:10.1016/j.bcp.2011.07.085

    Article  CAS  PubMed  Google Scholar 

  89. Wu WK, Cho CH, Lee CW, Wu YC, Yu L, Li ZJ, Wong CC, Li HT, Zhang L, Ren SX, Che CT, Wu K, Fan D, Yu J, Sung JJ (2010) Macroautophagy and ERK phosphorylation counteract the antiproliferative effect of proteasome inhibitor in gastric cancer cells. Autophagy 6:228–238

  90. Hui B, Shi YH, Ding ZB, Zhou J, Gu CY, Peng YF, Yang H, Liu WR, Shi GM, Fan J (2012) Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce apoptosis in hepatocellular carcinoma. Cancer 118:5560–5571. doi:10.1002/cncr.27586

    Article  CAS  PubMed  Google Scholar 

  91. Wang F, Liu J, Robbins D, Morris K, Sit A, Liu YY, Zhao Y (2011) Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells. Apoptosis 16:301–310

  92. Yoshikawa K, Hamada J, Tada M, Kameyama T, Nakagawa K, Suzuki Y, Ikawa M, Hassan NM, Kitagawa Y, Moriuchi T (2010) Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells. Biomed Res 31:401–411

    Article  CAS  PubMed  Google Scholar 

  93. Hanel W, Marchenko N, Xu S, Xiaofeng Yu S, Weng W, Moll U (2013) Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 20:898–909. doi:10.1038/cdd.2013.17

  94. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713. doi:10.1038/nrc2693

    CAS  PubMed  Google Scholar 

  95. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  96. Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P, Moll UM (2006) WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281:8600–8606. doi:10.1074/jbc.M507611200

    Article  CAS  PubMed  Google Scholar 

  97. Irwin MS (2004) Family feud in chemosensitvity: p73 and mutant p53. Cell Cycle 3:319–323

    Article  CAS  PubMed  Google Scholar 

  98. Davidson W, Ren Q, Kari G, Kashi O, Dicker AP, Rodeck U (2008) Inhibition of p73 function by Pifithrin-alpha as revealed by studies in zebrafish embryos. Cell Cycle 7:1224–1230

    Article  CAS  PubMed  Google Scholar 

  99. Charlot JF, Nicolier M, Pretet JL, Mougin C (2006) Modulation of p53 transcriptional activity by PRIMA-1 and Pifithrin-alpha on staurosporine-induced apoptosis of wild-type and mutated p53 epithelial cells. Apoptosis 11:813–827. doi:10.1007/s10495-006-5876-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Nadia Ashour and Dr. Santiago Ropero, from the University of Alcalá, for their invaluable help during the revision of this manuscript. This work was supported by Instituto de Salud Carlos III (PI06/0119), Comunidad de Madrid-University of Alcalá (CCG10-UAH/SAL-5966), and University of Alcalá (UAH GC2009-001; UAH 2011/BIO-006). Irene Gañán-Gomez was funded by the Human Resources Promotion Program of the Regional Plan for Scientific Research, Technological Development and Innovation 2005–2010 (Plan Regional para la Investigación Científica, Desarrollo Tecnológico e Innovación, PRINCET) from Junta de Comunidades de Castilla-la Mancha (Spain) and the European Social Fund (ESF) 2007/2013.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Boyano-Adánez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 61 kb)

Online Resource 2

(PDF 164 kb)

Online Resource 3

(PDF 303 kb)

Online Resource 4

(PDF 132 kb)

Online Resource 5

(PDF 221 kb)

Online Resource 6

(PDF 103 kb)

Online Resource 7

(PDF 69 kb)

Online Resource 8

(PDF 799 kb)

Online Resource 9

(PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gañán-Gómez, I., Estañ-Omaña, M.C., Sancho, P. et al. Mechanisms of resistance to apoptosis in the human acute promyelocytic leukemia cell line NB4. Ann Hematol 94, 379–392 (2015). https://doi.org/10.1007/s00277-014-2237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2237-3

Keywords

Navigation