Skip to main content

Advertisement

Log in

Downregulation of cyclooxygenase-2 expression and activation of caspase-3 are involved in peroxisome proliferator-activated receptor-γ agonists induced apoptosis in human monocyte leukemia cells in vitro

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a transcription factor important in fat metabolism and PPAR-γ agonists were recently demonstrated to affect proliferation, differentiation, and apoptosis of different cell types. In the present study, two PPAR-γ agonists, 15-deoxy-delta (12,14)-prostaglandin J2 (15d-PGJ2) and a synthetic PPAR-γ agonist troglitazone (TGZ), were used to investigate activated PPAR-γ-induced apoptosis on human monocyte leukemia U937 and Mono Mac 6 cells in vitro. The results showed that both U937 and Mono Mac 6 cells demonstrated constitutive activation of COX-2 expression; treatment by 15d-PGJ2 and TGZ could induce apoptosis remarkably in human monocyte leukemia cells by disruption of mitochondrial membrane potential, activation of caspase-3, and causing cleavage of the caspase substrate poly (ADP-ribose) polymerase (PARP). Further studies revealed that treatment by both 15d-PGJ2 and TGZ remarkably downregulated COX-2 expression in these two kind of monocyte leukemia cells as measured by reverse transcriptase PCR (RT-PCR) and Western blot. Furthermore, the expression of Bcl-2 and Bcl-Xl and Mcl-1 was downregulated while Bax expression was upregulated concurrently after the cells were treated by these two agonists, and no variations were found in other Bcl-2 family members such as Bak, Bid, and Bad. Taken together, our results demonstrate for the first time that downregulation of cyclooxygenase-2 expression, disruption of mitochondrial membrane potential, activation of caspase-3, downregulation of Bcl-2, Bcl-Xl, and Mcl-1, and upregulation of Bax are involved in PPAR-γ agonists-induced apoptosis in these two human monocyte leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jabbour EJ, Estey E, Kantarjian HM (2006) Adult acute myeloid leukemia. Mayo Clin Proc 81:247–260

    Article  PubMed  Google Scholar 

  2. Macheta M, Yin JA (2001) Recent advances in the treatment of AML. Hematol Oncol 19:107–118

    Article  PubMed  CAS  Google Scholar 

  3. Glass CK, Ogawa S (2006) Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 6:44–55

    Article  PubMed  CAS  Google Scholar 

  4. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159

    Article  PubMed  CAS  Google Scholar 

  5. Lehrke M, Lazar MA (2006) The many faces of PPAR gamma. Cell 123:993–999

    Article  CAS  Google Scholar 

  6. Gurnell M (2005) Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function: lessons from human genetic studies. Best Pract Res Clin Endocrinol Metab 19:501–523

    Article  PubMed  CAS  Google Scholar 

  7. Nemenoff RA, Winn RA (2005) Role of nuclear receptors in lung tumourigenesis. Eur J Cancer 41:2561–2568

    Article  PubMed  CAS  Google Scholar 

  8. Kawamata H, Tachibana M, Fujimori T, Imai Y (2006) Differentiation-inducing therapy for solid tumors. Curr Pharm Des 12:379–385

    Article  PubMed  CAS  Google Scholar 

  9. Panigrahy D, Huang S, Kieran MW, Kaipainen A (2005) PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4:687–693

    Article  PubMed  CAS  Google Scholar 

  10. Coyle AT, O’Keeffe MB, Kinsella BT (2005) 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS J 272:4754–4773

    Article  PubMed  CAS  Google Scholar 

  11. Coyle AT, Kinsella BT (2006) Synthetic peroxisome proliferator-activated receptor gamma agonists rosiglitazone and troglitazone suppress transcription by promoter 3 of the human thromboxane A2 receptor gene in human erythroleukemia cells. Biochem Pharmacol 71:1308–1323

    Article  PubMed  CAS  Google Scholar 

  12. Liu H, Zang C, Fenner MH, Liu D, Possinger K, Koeffler HP, Elstner E (2006) Growth inhibition and apoptosis in human Philadelphia chromosome-positive lymphoblastic leukemia cell lines by treatment with the dual PPARalpha/gamma ligand TZD18. Blood 107:3683–3692

    Article  PubMed  CAS  Google Scholar 

  13. Smith WL, Langenbach R (2001) Why there are two cyclooxygenase isozymes. J Clin Invest 107:1491–1495

    PubMed  CAS  Google Scholar 

  14. Morita I (2002) Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 68–69:165–175

    Article  PubMed  Google Scholar 

  15. Lu S, Yu G, Zhu Y, Archer MC (2005) Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer 116:847–852

    Article  PubMed  CAS  Google Scholar 

  16. Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31(2S7):2–11

    Article  PubMed  CAS  Google Scholar 

  17. Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19:19–27

    Article  PubMed  CAS  Google Scholar 

  18. Secchiero P, Barbarotto E, Gonelli A, Tiribelli M, Zerbinati C, Celeghini C, Agostinelli C, Pileri SA, Zauli G (2005) Potential pathogenetic implications of cyclooxygenase-2 overexpression in B chronic lymphoid leukemia cells. Am J Pathol 167:1599–1607

    PubMed  CAS  Google Scholar 

  19. Subhashini J, Mahipal SV, Reddanna P (2005) Anti-proliferative and apoptotic effects of celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett 224:31–43

    PubMed  CAS  Google Scholar 

  20. Chao SH, Wu AB, Lee CJ, Chen FA, Wang CC (2005) Anti-inflammatory effects of indomethacin’s methyl ester derivative and induction of apoptosis in HL-60 cells. Biol Pharm Bull 28:2206–2210

    Article  PubMed  CAS  Google Scholar 

  21. Hull MA (2005) Cyclooxygenase-2: how good is it as a target for cancer chemoprevention? Eur J Cancer 41:1854–1863

    Article  PubMed  CAS  Google Scholar 

  22. Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP (2004) Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 23:1000–1009

    Article  CAS  Google Scholar 

  23. Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E, Nelson M (2004) PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev 18:528–540

    Article  PubMed  CAS  Google Scholar 

  24. Pham H, Banerjee T, Nalbandian GM, Ziboh VA (2003) Activation of peroxisome proliferator-activated receptor (PPAR)-gamma by 15S-hydroxyeicosatrienoic acid parallels growth suppression of androgen-dependent prostatic adenocarcinoma cells. Cancer Lett 189:17–25

    Article  PubMed  CAS  Google Scholar 

  25. Panigrahy D, Shen LQ, Kieran MW, Kaipainen A (2003) Therapeutic potential of thiazolidinediones as anticancer agents. Expert Opin Investig Drugs 12:1925–1932

    Article  PubMed  CAS  Google Scholar 

  26. Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY, Chuang SE (2006) Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer118:773–779

    Article  PubMed  CAS  Google Scholar 

  27. Theocharis S, Margeli A, Vielh P, Kouraklis G (2004) Peroxisome proliferator-activated receptor-gamma ligands as cell-cycle modulators. Cancer Treat Rev 30:545–551

    Article  PubMed  CAS  Google Scholar 

  28. Chen YC, Shen SC, Tsai SH (2005) Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. Biochim Biophys Acta 1743:291–304

    Article  PubMed  CAS  Google Scholar 

  29. Wang T, Xu J, Yu X, Yang R, Han ZC (2006) Peroxisome proliferator-activated receptor gamma in malignant diseases. Crit Rev Oncol Hematol 58:1–14

    Article  PubMed  Google Scholar 

  30. Dempke W, Rie C, Grothey A, Schmoll HJ (2001) Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 127:411–417

    Article  PubMed  CAS  Google Scholar 

  31. Gately S, Kerbel R (2003) Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog Exp Tumor Res 37:179–192

    Article  PubMed  CAS  Google Scholar 

  32. Oshima M, Taketo MM (2002) COX selectivity and animal models for colon cancer. Curr Pharm Des 8:1021–1034

    Article  PubMed  CAS  Google Scholar 

  33. Park C, Choi BT, Kang KI, Kwon TK, Cheong J, Lee WH, Kim ND, Choi YH (2005) Induction of apoptosis and inhibition of cyclooxygenase-2 expression by N-methyl-N′-nitro-N-nitrosoguanidine in human leukemia cells. Anticancer Drugs 16:507–513

    Article  PubMed  Google Scholar 

  34. Chen XH, Bai JY, Shen F, Bai AP, Guo ZR, Cheng GF (2004) Imrecoxib: a novel and selective cyclooxygenase 2 inhibitor with anti-inflammatory effect. Acta Pharmacol Sin 25:927–931

    PubMed  Google Scholar 

  35. Danz H, Stoyanova S, Thomet OA, Simon HU, Dannhardt G, Ulbrich H, Hamburger M (2002) Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis. Planta Med 68:875–880

    Article  PubMed  CAS  Google Scholar 

  36. Berg J, Christoph T, Widerna M (1997) Isoenzyme-specific cyclooxygenase inhibitors: a whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac 6. J Pharmacol Toxicol Methods 37:179–186

    Article  PubMed  CAS  Google Scholar 

  37. Kirkin V, Joos S, Zornig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644:229–249

    Article  PubMed  CAS  Google Scholar 

  38. Wang S, Yang D, Lippman ME (2003) Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 30(S16):133–142

    Article  PubMed  CAS  Google Scholar 

  39. Letai A (2006) Growth factor withdrawal and apoptosis: the middle game. Mol Cell 17:749–760

    Google Scholar 

  40. Yang-Yen HF (2006) Mcl-1: a highly regulated cell death and survival controller. J Biomed Sci 13:201–204

    Article  PubMed  CAS  Google Scholar 

  41. Tang R, Faussat AM, Majdak P (2006) Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther 5:723–731

    Article  PubMed  CAS  Google Scholar 

  42. Rahmani M, Davis EM, Bauer C (2005) Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217–35227

    Article  PubMed  CAS  Google Scholar 

  43. Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113

    Article  PubMed  CAS  Google Scholar 

  44. Denault JB, Salvesen GS (2002) Caspases: keys in the ignition of cell death. Chem Rev 102:4489–4500

    Article  PubMed  CAS  Google Scholar 

  45. Philchenkov AA (2003) Caspases as regulators of apoptosis and other cell functions. Biochemistry 68:365–376

    PubMed  CAS  Google Scholar 

  46. Smolewski P, Darzynkiewicz Z, Robak T (2003) Caspase-mediated cell death in hematological malignancies: theoretical considerations, methods of assessment, and clinical implications. Leuk Lymphoma 44:1089–1104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Wang JB for presenting microculture tetrazolium, Dr. Zhu ZY and postdoctoral fellow Liu H for help with computer analysis and presentation of data. We also thank the members of our laboratories for their insight and technical support. This work is supported by the grants from National Natural Science Foundation of China (no. 30570786).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Jun Liu or Pei-Qing Liu.

Additional information

Dong-Jun Lin and Jia-Jun Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JJ., Liu, PQ., Lin, DJ. et al. Downregulation of cyclooxygenase-2 expression and activation of caspase-3 are involved in peroxisome proliferator-activated receptor-γ agonists induced apoptosis in human monocyte leukemia cells in vitro. Ann Hematol 86, 173–183 (2007). https://doi.org/10.1007/s00277-006-0205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-006-0205-2

Keywords

Navigation