Skip to main content
Log in

Assessment of left ventricular volumes and function by cine-MR imaging depending on the investigator’s experience

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Aims

To analyze the reproducibility of LV volumes calculated by cardiac magnetic resonance imaging (CMRI) and to compare them to those obtained by conventional ventriculography.

Methods

A total of 30 patients with stable ischemic heart disease were prospectively included. Each underwent CMRI twice and ventriculography. Left ventricular end diastolic volume (EDV), end systolic volume (ESV) and LV ejection fraction (EF) were calculated by two radiologists at different level of experience. Intraobserver, interobserver and interstudy variabilities were assessed.

Results

The cut off values were:

  • intraobserver variability (EDV, ESV, EF): 9.4 ml, 5.3 ml, 3.3% for well-trained radiologist; 13.1 ml, 7.5 ml, 4.1% for less-trained radiologist.

  • interobserver variability: EDV: 11.7 and 10.4 ml; ESV: 7.0 and 6.6 ml; EF: 3.9 and 4.2%.

  • interstudy variability (EDV, ESV, EF): 11.6 and 12.6 ml, 7.1 and 7.4 ml, 3.9 and 3.5%, for experienced and less-trained observers.

Statistical differences were found between CMRI and ventriculography: CMRI underestimation of EDV and EF, overestimation of ESV.

Conclusions

CMRI volumetric quantification of LV volumes and function is highly reproducible at different levels of experience, but not interchangeable with those obtained by ventriculography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  CAS  Google Scholar 

  2. Doughty RN, Whalley GA, Walsh HA, Gamble GD, Lopez-Sendom J, Sharpe N (2004) Effects of carvedilol on left ventricular remodeling after acute myocardial infarction. The CAPRICORN echo substudy. Circulation 109:201–206

    PubMed  CAS  Google Scholar 

  3. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM et al (2002) Left ventricular remodeling after primary coronary angioplasty. Patterns of left ventricular dilation and long term prognostic implications. Circulation 106:2351–2357

    PubMed  Google Scholar 

  4. Lipiecki J, Cachin F, Durel N, de Tauriac O, Ponsonnaille J, Maublant J (2004) Influence of infarct-zone viability detected by rest Tc-99m sestamibi gated SPECT on left ventricular remodeling after acute myocardial infarction treated by percutaneous transluminal coronary angioplasty in the acute phase. J Nucl Cardiol 11:673–681

    PubMed  Google Scholar 

  5. Chapman CB, Baker O, Reynolds J, Bonte FJ (1958) Use of biplane cinefluorography for measurement of ventricular volume. Circulation 18:1105–1117

    PubMed  CAS  Google Scholar 

  6. Sandler H, Dodge HT (1968) The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J 75:325–334

    PubMed  CAS  Google Scholar 

  7. Sapin PM, Schroeder KM, Gopal AS, Smith MD, King DL (1995) Three-dimensional echocardiography: limitations of apical biplane imaging for measurement of left ventricular volume. J Am Soc Echocardiogr 8:576–584

    PubMed  CAS  Google Scholar 

  8. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJS, Cleland JGF, Pennel DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396

    PubMed  CAS  Google Scholar 

  9. Slart RH, Bax JJ, de Jong RM, de Boer J, Lamb HJ, Mook PH, Willemsen AT, Vaalburg W, van Veldhuisen DJ, Jager PL (2004) Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease. J Nucl Med 45:176–182

    PubMed  Google Scholar 

  10. Winterer JT, Lenhardt S, Schneder B, Neuman K, Allmann KH, Laubenberger J et al (1999) MRI of heart morphology. Comparison of nongradient echo sequences with single- and multislice acquisition. Invest Radiol 34:516–522

    PubMed  CAS  Google Scholar 

  11. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP (1999) Normal human right and left ventricular mass, systolic function and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    PubMed  CAS  Google Scholar 

  12. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  CAS  Google Scholar 

  13. Salton CJ, Chuang ML, O’Donnell CJ, Kupka MJ, Larson MG, Kissinger KV et al (2002) Gender difference and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol 39:1055–1060

    PubMed  Google Scholar 

  14. Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC (2002) Cardiac function: evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842

    PubMed  Google Scholar 

  15. Sievers B, Brandts B, Franken U, Trappe H-J (2004) Single and biplane TrueFISP cardiovascular magnetic resonance for rapid evaluation of left ventricular volumes and ejection fraction. J Cardiovasc Magn Reson 6:593–600

    PubMed  Google Scholar 

  16. Matsumura K, Nakase E, Haiyama T et al (1993) Determination of cardiac ejection fraction and left ventricular volume: contrast-enhanced ultrafast cine MR imaging vs IV digital subtraction ventriculography. AJR Am J Roentgenol 160:979–985

    PubMed  CAS  Google Scholar 

  17. Semelka RC, Tomei E, Wagner S et al (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768

    PubMed  CAS  Google Scholar 

  18. Semelka RC, Tomei E, Wagner S et al (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    PubMed  CAS  Google Scholar 

  19. Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268

    PubMed  CAS  Google Scholar 

  20. Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    PubMed  CAS  Google Scholar 

  21. Medina LS, Zurakowski D (2003) Measurement variability and confidence intervals in medicine: why should radiologists care? Radiology 226:297–301

    PubMed  Google Scholar 

  22. Bolognese L, Carrabba N, Parodi G et al (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126

    PubMed  Google Scholar 

  23. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

    PubMed  Google Scholar 

  24. Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842

    PubMed  Google Scholar 

  25. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    PubMed  CAS  Google Scholar 

  26. Jung BA, Hennig J, Scheffler K (2002) Single-breathhold 3D-trueFISP cine cardiac imaging. Magn Reson Med 48:921–925

    PubMed  Google Scholar 

  27. Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342

    PubMed  Google Scholar 

  28. Bloomer TN, Plein S, Radjenovic A et al (2001) Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging 14:685–692

    PubMed  CAS  Google Scholar 

  29. Swingen CM, Seethamraju RT, Jerosch-Herold M (2003) Feedback-assisted three-dimensional reconstruction of the left ventricle with MRI. J Magn Reson Imaging 17:528–537

    PubMed  Google Scholar 

  30. Hori Y, Yamada N, Higashi M, Hirai N, Nakatani S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5:439–450

    PubMed  Google Scholar 

  31. Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    PubMed  Google Scholar 

  32. Bogaert JG, Bosmans HT, Rademakers FE et al (1995) Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. Magma 3:5–12

    PubMed  CAS  Google Scholar 

  33. Kaji S, Yang PC, Kerr AB et al (2001) Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 38:527–533

    PubMed  CAS  Google Scholar 

  34. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278

    PubMed  CAS  Google Scholar 

  35. Chuang ML, Hibberd MG, Salton CJ, Beadin RA, Riley MF, Parker RA et al (2000) Importance of imaging method over imaging modality in non-invasive determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 35:477–484

    PubMed  CAS  Google Scholar 

  36. Danilouchkine MG, Westenberg JJM, De Roos A, Reiber JH (2005) Operator induced variability in cardiovascular MR: left ventricular measurements and their reproducibility. J Cardiovasc Magn Reson 7:447–457

    PubMed  Google Scholar 

  37. Hori Y, Yamada N, Higashi M, Hirai N, Nakatami S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5:439–450

    PubMed  Google Scholar 

  38. Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342

    PubMed  Google Scholar 

  39. Cranney GB, Lotan CS, Dean L, Baxley W, Bouchard A, Pohost GM (1990) Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation 82:154–163

    PubMed  CAS  Google Scholar 

  40. Malm S, Frigstad S, Sagberg E, Larsson H, Skjaerpe T (2004) Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography. J Am Coll Cardiol 44:1030–1035

    PubMed  Google Scholar 

  41. Jeremy RW, Allman KC, Bautovitch G, Harris PJ (1989) Patterns of ventricular dilatation during the six months after myocardial infarction. J Am Coll Cardiol 13:304–310

    Article  PubMed  CAS  Google Scholar 

  42. Schinkel AF, Poldermans D, Rizello V, Vanoverschelde J-LJ, Elhendy A, Boersma E et al (2004) Why patients with ischemic cardiomyopathy and a substantial amount of viable myocardium not always recover in function after revascularisation? J Thorac Cardiovasc Surg 127:385–390

    PubMed  Google Scholar 

  43. Bax JJ, Schinkel AFL, Boersma E, Elhendy A, Rizello V, Maat A et al (2004) Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularisation and is associated with worse long-term prognosis. Circulation 110:II18–II22

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Boyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailly, A., Lipiecki, J., Chabrot, P. et al. Assessment of left ventricular volumes and function by cine-MR imaging depending on the investigator’s experience. Surg Radiol Anat 31, 113–120 (2009). https://doi.org/10.1007/s00276-008-0415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-008-0415-5

Keywords

Navigation