Skip to main content
Log in

Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The Cavalieri estimator using a point grid is used to estimate the volume of three-dimensional structures based on two-dimensional slices of the object. The size of the components of intracranial neural structures should have proportional relations among them. The volume fraction approach of stereological methods provides information about volumetric relations of the components of structures. The purpose of our study is to estimate the volume and volume fraction data related to the cerebrum, cerebellum and brain stem. In this study, volume of the total brain, cerebrum, cerebellum and brain stem were estimated in 24 young Turkish volunteers (12 males and 12 females) who are free of any neurological symptoms and signs. The volume and volume fraction of the total brain, cerebrum, cerebellum and brain stem were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods. The mean (±SD) total brain, cerebrum and cerebellum volumes were 1,202.05 ± 103.51, 1,143.65 ± 106.25 cm3 in males and females, 1,060.0 ±  94.6, 1,008.9 ±  104.3 cm3 in males and females, 117.75 ± 10.7, 111.83 ± 8.0 cm3 in males and females, respectively. The mean brain stem volumes were 24.3 ± 2.89, 22.9 ± 4.49 cm3 in males and females, respectively. Our results revealed that female subjects have less cerebral, cerebellar and brain stem volumes compared to males, although there was no statistically significant difference between genders (P > 0.05). The volume ratio of the cerebrum to total brain volume (TBV), cerebellum to TBV and brain stem to TBV were 88.16 and 88.13% in males and females, 9.8 and 9.8% in males and females, 2.03 and 2.03% in males and females, respectively. The volume ratio of the cerebellum to cerebrum, brain stem to cerebrum and brain stem to cerebellum were 11.12 and 11.16% in males and females, 2.30 and 2.31% in males and females, 20.7 and 20.6% in males and females, respectively. The difference between the genders was not statistically significant (P > 0.05). Our results revealed that the volumetric composition of the cerebrum, cerebellum and brain stem does not show sexual dimorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acer N, Sahin B, Bas O, Ertekin T, Usanmaz M (2007) Comparison of three methods for the estimation of total intracranial volume: stereologic, planimetric, and anthropometric approaches. Ann Plast Surg 58:48–53

    Article  PubMed  CAS  Google Scholar 

  2. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  PubMed  Google Scholar 

  3. Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray–white composition of the human cerebrum. Neuroimage 18:880–894

    Article  PubMed  Google Scholar 

  4. Barta P, Dazzan P (2003) Hemispheric surface area: sex, laterality and age effects. Cereb Cortex 13:364–370

    Article  PubMed  Google Scholar 

  5. Basoglu A, Buyukkarabacak Y, Sahin B, Kaplan S (2007) Volumetric evaluation of the lung expansion following resection: a stereological study. Eur J Cardiothorac Surg 31:512–517

    Article  PubMed  Google Scholar 

  6. Blatter DD, Bigler ED, Gale SD et al (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol 16:241–251

    PubMed  CAS  Google Scholar 

  7. Cotter D, Miszkiel K, Al-Sarraj S et al (1999) The assessment of postmortem brain volume: a comparison of stereological and planimetric methodologies. Neuroradiology 41:493–496

    Article  PubMed  CAS  Google Scholar 

  8. Escalona PR, McDonald WM, Doraiswamy PM et al (1991) In vivo stereological assessment of human cerebellar volume: effects of gender and age. Am J Neuroradiol 12:927–929

    PubMed  CAS  Google Scholar 

  9. Filipek PA, Richelme C, Kennedy DN, Caviness JR (1994) The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex 4:344–360

    Article  PubMed  CAS  Google Scholar 

  10. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  CAS  Google Scholar 

  11. Gundersen HJG, Osterby R (1980) Sampling efficiency and biological variation in stereology. Mikroskopie 37:143–148

    Google Scholar 

  12. Howard CV, Reed MG (1998) Unbiased stereology. Three-dimensional measurement in microscopy. Bios, Oxford, pp 55–68

    Google Scholar 

  13. Kalkan E, Cander B, Gul M, Karabagli H, Girisgin S, Sahin B (2007) A new stereological method for the assessment (prediction) of prognosis in patients with epidural hematoma: the hematoma to total brain volume fraction. Tohoku J Exp Med 211:235–242

    Article  PubMed  Google Scholar 

  14. Knutson B, Momenan R, Rawlings RR, Fong GW, Hommer D (2001) Negative association of neuroticism with brain volume ratio in healthy humans. Biol Psychiatry 50:685–690

    Article  PubMed  CAS  Google Scholar 

  15. Kruggel F (2006) MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 30:1–11

    Article  PubMed  CAS  Google Scholar 

  16. Luft AR, Skalej M, Welte D et al (1997) Age and sex do not affect cerebellar volume in humans. Am J Neuroradiol 18:593–596

    PubMed  CAS  Google Scholar 

  17. Mattfeldt T, Gottfried HW, Wolter H, Schmidt V, Kestler HA, Mayer J (2003) Classification of prostatic carcinoma with artificial neural networks using comparative genomic hybridization and quantitative stereological data. Pathol Res Pract 199:773–784

    Article  PubMed  CAS  Google Scholar 

  18. Mattfeldt T, Trijic D, Gotffried HW, Kestler HA (2004) Incidental carcinoma of the prostate: clinicopathological, stereological and immunohistochemical findings studied with logistic regression and self-organizing feature maps. BJU Int 93:284–290

    Article  PubMed  CAS  Google Scholar 

  19. Mayhew TM, Olsen DR (1991) Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat 178:133–144

    PubMed  CAS  Google Scholar 

  20. Mazonakis M, Karampekios S, Damilakis J, Voloudaki A, Gourtsoyiannis N (2004) Stereological estimation of total intracranial volume on CT images. Eur Radiol 14:1285–1290

    Article  PubMed  Google Scholar 

  21. Nopoulos P, Flaum M, Olerary D, Andreasen NC. (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry 98:1–13

    Article  CAS  Google Scholar 

  22. Odaci E, Sahin B, Sönmez OF, Kaplan S, Bas O, Bilgic S et al (2003) Rapid estimation of the vertebral body volume: a combination of the Cavalieri principle and computed tomography images. Eur J Radiol 48:316–326

    Article  PubMed  Google Scholar 

  23. Ragbetli MC, Ozyurt B, Aslan H, Odaci E, Gokcimen A, Sahin B, Kaplan S (2007) Effect of prenatal exposure to diclofenac sodium on Purkinje cell numbers in rat cerebellum: a stereological study. Brain Res 12:130–135

    Article  CAS  Google Scholar 

  24. Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD (1998) Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. AJNR Am J Neuroradiol 19:65–71

    PubMed  CAS  Google Scholar 

  25. Reed MG, Howard CV (1998) Surface-weighted star volume: concept and estimation. J Microsc 190:350–356

    Article  PubMed  CAS  Google Scholar 

  26. Rhyu J, Cho TH, Lee NJ et al (1999) Magnetic resonance image-based cerebellar volumetry in healthy Korean adults. Neurosci Lett 270:149–152

    Article  PubMed  CAS  Google Scholar 

  27. Roberts N, Puddephat MJ, McNulty V (2000) The benefit of stereology for quantitative radiology. Br J Radiol 73:679–697

    PubMed  CAS  Google Scholar 

  28. Ronan L, Doherty CP, Delanty N, Thornton J, Fitzsimons M (2006) Quantitative MRI: a reliable protocol for measurement of cerebral gyrification using stereology. Magn Reson Imaging 24:265–272

    Article  PubMed  Google Scholar 

  29. Sahin B, Acer N, Sonmez OF et al (2007) Comparison of four methods for the estimation of intracranial volume: a gold standard study. Clin Anat 20:766–773

    Article  PubMed  CAS  Google Scholar 

  30. Sahin B, Ergur H (2006) Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study. Eur J Radiol 57:96–101

    Article  PubMed  Google Scholar 

  31. Sahin B, Alper T, Kokcu A, Malatyalioglu E, Kosif R (2003) Estimation of the amniotic fluid volume using the Cavalieri method on ultrasound images. Int J Gynaecol Obst 82:25–30

    Article  CAS  Google Scholar 

  32. Sahin B, Emirzeoglu M, Uzun A, Incesu L, Bek Y, Bilgic S et al (2003) Unbiased estimation of the liver volume by the Cavalieri principle using magnetic resonance images. Eur J Radiol 47:164–170

    Article  PubMed  Google Scholar 

  33. Sgouros S, Goldin JH, Hockley AD, Wake MJ, Natarajan K (1999) Intracranial volume change in childhood. J Neurosurg 91:610–616

    Article  PubMed  CAS  Google Scholar 

  34. West WJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyazi Acer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekinci, N., Acer, N., Akkaya, A. et al. Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging. Surg Radiol Anat 30, 489–494 (2008). https://doi.org/10.1007/s00276-008-0356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-008-0356-z

Keywords

Navigation