Skip to main content
Log in

Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Among the basal ganglia nuclei, the subthalamic nucleus (STN) is considered to play a major role in output modulation. The STN represents a relay of the motor cortico-basal ganglia-thalamo-cortical circuit and has become the standard surgical target for treating Parkinson’s patients with long-term motor fluctuations and dyskinesia. But chronic bilateral stimulation of the STN produces cognitive effects. According to animal and clinical studies, the STN also appears to have direct or indirect connections with the frontal associative and limbic areas. This prospective study was conducted to analyse regional cerebral blood flow changes in single-photon emission computed tomography imaging of six Parkinson’s patients before and after STN stimulation. We particularly focused on the dorsolateral prefrontal cortex and the frontal limbic areas using a manual anatomical MRI segmentation method. We defined nine regions of interest, segmenting each MR slice to quantify the regional cerebral blood flow on pre- and postoperative SPECT images. We normalised the region-of-interest-based measurements to the entire brain volume. The patients showed increased activation during STN stimulation in the dorsolateral prefrontal cortex bilaterally and no change in the anterior cingulate and orbito-frontal cortices. In our study, STN stimulation induced activation of premotor and associative frontal areas. Further studies are needed to underline involvement of the STN with the so-called limbic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  2. Antonini A, Landi A, Benti R, Mariani C, De Notaris R, Marotta G et al (2003) Functional neuroimaging (PET and SPECT) in the selection and assessment of patients with Parkinson’s disease undergoing deep brain stimulation. J Neurosurg Sci 47:40–46

    PubMed  CAS  Google Scholar 

  3. Benabid A-L, Koudsié A, Benazzouz A, Fraix V, Ashraf A, Le Bas JF et al (2000) Subthalamic stimulation for Parkinson’s disease. Arch Med Res 31:282–289

    Article  PubMed  CAS  Google Scholar 

  4. Boussion N, Ryvlin P, Isnard J, Houzard C, Mauguiere F, Cinotti L (2000) Towards an optimal reference region in single photon-emission tomography difference images in epilepsy. Eur J Nucl Med 27:155–160

    Article  PubMed  CAS  Google Scholar 

  5. Broca P (1878) Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique et la scissure limbique dans la série des mammifères. Rev Anthropol 1:384–498

    Google Scholar 

  6. Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, Conrad B et al (1999) A positron emission tomography study of subthalamic nucleus stimulation in Parkinson disease. Arch Neurol 56:997–1003

    Article  PubMed  CAS  Google Scholar 

  7. Chang LT (1978) A method for attenuation correction in radionucleide computed tomography. IEEE Trans Nucl Sci 25:638–643

    Google Scholar 

  8. Chudasama Y, Baunez C, Robbins TW (2003) Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence of corticosubthalamic interaction. J Neurosci 23:5477–5485

    PubMed  CAS  Google Scholar 

  9. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  PubMed  CAS  Google Scholar 

  10. Dujardin K, Defebvre L, Krystkowiak P, Blond S, Destee A (2001) Influence of chronic bilateral stimulation of subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 248:603–611

    Article  PubMed  CAS  Google Scholar 

  11. Dujardin K, Blairy S, Defebvre L, Krystkowiak P, Hess U, Blond S et al (2004) Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:202–208

    PubMed  CAS  Google Scholar 

  12. Duvernoy (1991) The human brain. Surface, three-dimensional sectional anatomy and MRI. Springer Berlin Heidelberg New York

  13. Fahn S, Elton RL (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds) Recent developments in Parkinson’s Disease, vol 2. Macmillan, New York, pp 153–163

  14. Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RSJ (1995) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  15. Frouin V, Comtat C, Reilhac A, Gregoire MC (2002) Correction of partial-volume effect of PET striatal imaging: fast implementation and study of robustness. J Nucl Med 43:1715–1726

    PubMed  Google Scholar 

  16. Grova C, Biraben A, Scarabin JM, Jannin P, Buvat I, Benali I et al (2001) A methodology to validate MRI/SPECT registration methods using realistic SPECT simulated data. In: Proceedings of medical image computing and computer assisted interventions (MICCAI), lectures notes in computer science (LNCS) 2208, pp 275–282

  17. Hilker R, Voges J, Thiel A, Ghaemi M, Kerholz K, Sturm V et al (2002) Deep brain stimulation of the subthalamic nucleus versus levodopa challenge in Parkinson’s disease: measuring the on- and off-conditions with FDG-PET. J Neural Transm 109:1257–1264

    Article  PubMed  CAS  Google Scholar 

  18. Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M et al (2003) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24:7–16

    Google Scholar 

  19. Hoehn MM, Yahr MD (1967) Parkinsonism: onset progression and mortality. Neurology 17:427–442

    PubMed  CAS  Google Scholar 

  20. Hughes AJ, Daniel SE, Kilford L, Less AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  21. Isaacson RL (1992) A fuzzy limbic system. Behav Brain Res 52:129–131

    Article  PubMed  CAS  Google Scholar 

  22. Joel D, Weiner I (1997) The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res Rev 23:62–78

    Article  PubMed  CAS  Google Scholar 

  23. Kikuchi A, Takeda A, Kimpara T, Nakagawa M, Kawashima R, Sugiura M et al (2001) Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and in the insula cortex in Parkinson’s disease. J Neurol Sci 193:29–36

    Article  PubMed  CAS  Google Scholar 

  24. Kötter R, Meyer N (1992) The limbic system: A review of its empirical foundation. Behav Brain Res 52:105–127

    Article  PubMed  Google Scholar 

  25. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E et al (1995) Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    Article  PubMed  CAS  Google Scholar 

  26. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 42:283–291

    Article  PubMed  CAS  Google Scholar 

  27. Mac Lean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portions of limbic system (visceral brain). Electroencephalograph Clin Neurophysiol 4:407–418

    Article  CAS  Google Scholar 

  28. Maurice N, Deniau JM, Glowinski J, Thierry AM (1998) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J Neurosci 18:9539–9546

    PubMed  CAS  Google Scholar 

  29. Matsumara M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and occulomotor functions of monkey subthalamic nucleus. J Neurophysiol 67:1615–1632

    PubMed  Google Scholar 

  30. Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comput Neurol 180:1–16

    Article  CAS  Google Scholar 

  31. Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Georg Thieme Verlag, Stuttgart-New York

    Google Scholar 

  32. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Google Scholar 

  33. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglio-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  PubMed  CAS  Google Scholar 

  34. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    Article  PubMed  CAS  Google Scholar 

  35. Parent A (1996) Carpenter’s human neuroanatomy. William Wilkins, Media, PA

    Google Scholar 

  36. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123:2091–2108

    Article  PubMed  Google Scholar 

  37. Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel W, Tronnier VM et al (2002) Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125:1995–2004

    Article  PubMed  CAS  Google Scholar 

  38. Schroeder U, Kuehler A, Lange KW, Haslinger B, Tronnier VM, Krause M et al (2003) Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 54:445–450

    Article  PubMed  Google Scholar 

  39. Sestini S, Scotto di Luzio A, Ammanati F, Deistofaro MTR, Passeri A, Martini S et al (2002) Changes in cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 43:725–732

    PubMed  Google Scholar 

  40. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  41. The Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Eng J Med 345:956–963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Morandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haegelen, C., Verin, M., Broche, B.A. et al. Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method. Surg Radiol Anat 27, 389–394 (2005). https://doi.org/10.1007/s00276-005-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-005-0021-8

Keywords

Navigation