Skip to main content
Log in

Assessment of a 4-input artificial neural network for ETo estimation through data set scanning procedures

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Evapotranspiration is a complex and non-linear phenomenon that depends on the interaction of several climatic parameters. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modeling of non-linear processes. In general, in the most common ANN applications, the available climatic series are usually split up into 3 data sets: one for training, one for cross-validating, and one for testing. Up to now, the studies regarding ANN-models for reference evapotranspiration estimation and forecasting consider usually only a single chronological assignment of data for the definition of these 3 data sets. In these cases, the ANN performance can only be referred to this specific data set assignment. This paper analyzes the performance of a simple ANN model, a temperature-based 4-input ANN, taking into consideration a complete scan of the possible training, cross-validation, and test set configurations using ‘leave one out’ procedures. The results of a comparative analysis between both methodologies show that the performance results achieved with the traditional methodology can be misleading when evaluating the real ability of a model, as they are referred to the single specific data set assignment assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome

    Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97

    Google Scholar 

  • Campolo M, Andreussi P, Sodalt A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191–1197

    Article  Google Scholar 

  • Chinh LV, Hiramatsu K, Harada M, Mori M (2009) Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models. Agric Wat Manag 96(9):1332–1338

    Article  Google Scholar 

  • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361

    Article  Google Scholar 

  • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptions. Adv Water Resour 27(2):185–195

    Article  Google Scholar 

  • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training multilayer Networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  PubMed  CAS  Google Scholar 

  • Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, MA, Boston

    Google Scholar 

  • Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey

    Google Scholar 

  • Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233(1–4):138–153

    Article  Google Scholar 

  • Jain A, Srinivasulu S (2006) Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J Hydrol 317(1–4):291–306

    Article  Google Scholar 

  • Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manage 125(5):263–271

    Article  Google Scholar 

  • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317

    Article  Google Scholar 

  • Kişi Ö (2004) River flow modelling using artificial neural networks. J Hydrol Eng 9(1):60–63

    Article  Google Scholar 

  • Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260

    Article  Google Scholar 

  • Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105

    Article  Google Scholar 

  • Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934

    Article  Google Scholar 

  • Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–1460

    Google Scholar 

  • Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430

    Article  Google Scholar 

  • Kişi Ö, Cimen Ö (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928

    Article  Google Scholar 

  • Kişi Ö, Öztürk Ö (2007) Adaptive Neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Wat Manag 95(5):553–565

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334

    Article  Google Scholar 

  • Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Wat Manag 97(7):939–955

    Google Scholar 

  • Martí P, Royuela A, Manzano J, Palau G (2008a) Applicability of a 4-input ANN model for ETo prediction in coastal and inland locations. In: Villacampa Esteve Y, Brebbia CA, Prats Rico D (eds) Sustainable irrigation. Management, technologies and policies II. Proceedings, 11–13 June 2008 at Alicante. WIT Press, Spain, pp 167–176

    Chapter  Google Scholar 

  • Martí P, Royuela A, Manzano J, Palau G (2008b) Improvement of temperature based ANN models for ETo prediction in coastal locations by means of preliminary models and exogenous data. Eighth international conference on hybrid intelligent systems 2008 proceedings, pp 344–349. IEEE Xplore

  • Martí P, Gasque M, Royuela A (2010a) Discussion of ‘Forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):435–438

    Google Scholar 

  • Martí P, Provenzano G, Royuela A, Palau G (2010b) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22

    Article  Google Scholar 

  • Martí P, Royuela A, Manzano J, Palau G (2010c) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174

    Article  Google Scholar 

  • Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick, Mass

  • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417

    Article  Google Scholar 

  • Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6):1625–1633

    Google Scholar 

  • Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Eng 102(2):202–218

    Article  Google Scholar 

  • Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1–2):1–15

    Article  Google Scholar 

  • Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution system. J Irrig Drain Eng 129(6):422–431

    Article  Google Scholar 

  • Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regression and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Eng 97(2):283–293

    Article  Google Scholar 

  • Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259

    Article  Google Scholar 

  • Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39

    Article  Google Scholar 

  • Sarangi A, Singh M, Bhattacharya AK, Singh AK (2006) Subsurface drainage performance study using SALTMOD and ANN models. Agric Wat Manag 84(3):240–248

    Article  Google Scholar 

  • Sharma V, Negi SC, Rudra RP, Yang S (2003) Neural networks for predicting nitrate-nitrogen in drainage water. Agric Wat Manag 63(3):169–183

    Article  Google Scholar 

  • Shayya WH, Sablani SS (1998) An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comp Electron Agric 21(3):219–228

    Article  Google Scholar 

  • Shukla MB, Kok R, Prasher SO, Clark G, Lacroix R (1996) Use of artificial neural network in transient drainage design. Trans ASAE 39(1):119–124

    Google Scholar 

  • Silva AF (2002) Previsão da evapotranspiração de referencia utilizando redes neurais. Dissertação de Mestrado, Univ. Federal de Viçosa. Viçosa, Minas Gerais, Brazil

    Google Scholar 

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218

    Article  Google Scholar 

  • Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32

    Article  Google Scholar 

  • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation model. Phys Geogr 2(2):184–194

    Google Scholar 

  • Yang CC, Prasher SO, Lacroix R (1996) Application of artificial neural network to land drainage engineering. Trans ASAE 39(2):525–533

    Google Scholar 

  • Yang CC, Lacroix R, Prasher SO (1998) The use of backpropagation neural networks for the simulation and analysis of time series data in subsurface systems. Trans ASAE 41(4):1181–1187

    Google Scholar 

  • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Martí.

Additional information

Communicated by S. Azam-Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, P., Manzano, J. & Royuela, Á. Assessment of a 4-input artificial neural network for ETo estimation through data set scanning procedures. Irrig Sci 29, 181–195 (2011). https://doi.org/10.1007/s00271-010-0224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-010-0224-6

Keywords

Navigation