Skip to main content
Log in

Radiation Exposure During Transarterial Chemoembolization: Angio-CT Versus Cone-Beam CT

  • Clinical Investigation
  • Imaging
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Introduction

Cone-beam computed tomography (CBCT) has been developed to improve reliability of many interventional radiology (IR) procedures performed with Angio system, such as transarterial chemoembolization (TACE). Angio-CT has emerged as a new imaging technology that combines a CT scanner with an Angio system in the same IR suite. The purpose of our study was to compare Angio system with CBCT capability and Angio-CT in terms of patient radiation exposure during TACE procedures.

Materials and Methods

Consecutive TACE procedures performed between January 2016 and September 2017 with the two imaging modalities (Artis Zeego defining the CBCT group and Infinix-i 4D-CT defining the Angio-CT group) were reviewed. TACE and patient’s characteristics and patient radiation exposure parameters were collected. Dose-area products (DAP) and dose-length products (DLP) were converted into effective doses (ED) using conversion factors. Accuracy of tumor targeting and response was retrospectively assessed.

Results

A total of 114 TACE procedures in 96 patients were included with 57 procedures in each group. The total ED in the Angio-CT group was 2.5 times lower than that in the CBCT group (median 15.4 vs. 39.2 mSv, p < 0.001). Both 2D ED and 3D ED were lower in the Angio-CT group than in the CBCT group (5.1 vs. 20 mSv, p < 0.001, and 7.4 vs. 17.9 mSv, p < 0.001, respectively). There was no significant difference neither in terms of classes of tumor targeting (p = 0.509) nor in terms of classes of tumor response (p = 0.070) between both groups.

Conclusion

Angio-CT provides significant decrease in patient effective dose during TACE procedures compared to Angio system with CBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  Google Scholar 

  2. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.

    Article  Google Scholar 

  3. Mahnken AH, Pereira PL, De Baere T. Interventional oncologic approaches to liver metastases. Radiology. 2013;266(2):407–30.

    Article  PubMed  Google Scholar 

  4. De Baere T, Deschamps F, Tselikas L, Ducreux M, Planchard D, Pearson E, et al. GEP-NETS update: interventional radiology: role in the treatment of liver metastases from GEP-NETs. Eur J Endocrinol. 2015;172(4):R151–66.

    Article  PubMed  Google Scholar 

  5. Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. 2010;33(6):1235–42.

    Article  Google Scholar 

  6. Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol JVIR. 2013;24(4):501–8.

    Article  PubMed  Google Scholar 

  7. Orth RC, Wallace MJ, Kuo MD. Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol JVIR. 2008;19(6):814–20.

    Article  PubMed  Google Scholar 

  8. Tacher V, Radaelli A, Lin M, Geschwind J-F. How I do it: cone-beam CT during transarterial chemoembolization for liver cancer. Radiology. 2015;274(2):320–34.

    Article  PubMed  Google Scholar 

  9. Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J, et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol JVIR. 2007;18(12):1500–7.

    Article  PubMed  Google Scholar 

  10. Jonczyk M, Collettini F, Geisel D, Schnapauff D, Böning G, Wieners G, et al. Radiation exposure during TACE procedures using additional cone-beam CT (CBCT) for guidance: safety and precautions. Acta Radiol Stockh Swed 1987. 2018 284185118761203.

  11. Yao X, Yan D, Jiang X, Li X, Zeng H, Liu D, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer. Acad Radiol. 2018;25:1031–7.

    Article  PubMed  Google Scholar 

  12. Kothary N, Abdelmaksoud MHK, Tognolini A, Fahrig R, Rosenberg J, Hovsepian DM, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol JVIR. 2011;22(11):1535–43.

    Article  PubMed  Google Scholar 

  13. Inaba Y, Arai Y, Kanematsu M, Takeuchi Y, Matsueda K, Yasui K, et al. Revealing hepatic metastases from colorectal cancer: value of combined helical CT during arterial portography and CT hepatic arteriography with a unified CT and angiography system. AJR Am J Roentgenol. 2000;174(4):955–61.

    Article  CAS  PubMed  Google Scholar 

  14. Takada K, Toyoda H, Tada T, Ito T, Hasegawa R, Gotoh T, et al. Accurate and rapid identification of feeding arteries with multidetector-row angiography-assisted computed tomography for transarterial chemoembolization for hepatocellular carcinoma. J Gastroenterol. 2015;50(12):1190–6.

    Article  CAS  PubMed  Google Scholar 

  15. Toyoda H, Kumada T, Sone Y. Impact of a unified CT angiography system on outcome of patients with hepatocellular carcinoma. AJR Am J Roentgenol. 2009;192(3):766–74.

    Article  PubMed  Google Scholar 

  16. Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, et al. Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Interv Radiol. 2006;29(6):1034–8.

    Article  Google Scholar 

  17. International Commission on Radiological Protection. Radiation protection in medicine. ICRP Publication 105. Ann ICRP. 2007;37(6):1–63.

    Article  Google Scholar 

  18. Etard C, Bigand E, Salvat C, Vidal V, Beregi JP, Hornbeck A, et al. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France. Eur Radiol. 2017;27(10):4281–90.

    Article  PubMed  Google Scholar 

  19. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  20. Karavasilis E, Dimitriadis A, Gonis H, Pappas P, Georgiou E, Yakoumakis E. Dose coefficients for liver chemoembolisation procedures using Monte Carlo code. Radiat Prot Dosim. 2016;172(4):409–15.

    Article  CAS  Google Scholar 

  21. Suzuki S, Furui S, Yamaguchi I, Yamagishi M, Watanabe A, Abe T, et al. Effective dose during abdominal three-dimensional imaging with a flat-panel detector angiography system. Radiology. 2009;250(2):545–50.

    Article  PubMed  Google Scholar 

  22. Sailer AM, Schurink GWH, Wildberger JE, de Graaf R, van Zwam WH, de Haan MW, et al. Radiation exposure of abdominal cone beam computed tomography. Cardiovasc Interv Radiol. 2015;38(1):112–20.

    Article  Google Scholar 

  23. Hwang Y-S, Tsai H-Y, Lin Y-Y, Lui K-W. Investigations of organ and effective doses of abdominal cone-beam computed tomography during transarterial chemoembolization using Monte Carlo simulation. BMC Med Imaging. 2018;18(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257(1):158–66.

    Article  PubMed  Google Scholar 

  25. Sato Y, Watanabe H, Sone M, Onaya H, Sakamoto N, Osuga K, et al. Tumor response evaluation criteria for HCC (hepatocellular carcinoma) treated using TACE (transcatheter arterial chemoembolization): RECIST (response evaluation criteria in solid tumors) version 1.1 and mRECIST (modified RECIST): JIVROSG-0602. UPS J Med Sci. 2013;118(1):16–22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roy C, Quin R, Labani A, Leyendecker P, Mertz L, Ohana M. Wide volume versus helical acquisition using 320-detector row computed tomography for computed tomography urography in adults. Diagn Interv Imaging. 2018;99:653–62.

    Article  CAS  PubMed  Google Scholar 

  27. Pung L, Ahmad M, Mueller K, Rosenberg J, Stave C, Hwang GL, et al. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. J Vasc Interv Radiol JVIR. 2017;28(3):334–41.

    Article  PubMed  Google Scholar 

  28. Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Sugimori N, Igarashi S, et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Interv Radiol. 2009;32(2):255–64.

    Article  Google Scholar 

  29. Chehab MA, Brinjikji W, Copelan A, Venkatesan AM. Navigational tools for interventional radiology and interventional oncology applications. Semin Interv Radiol. 2015;32(4):416–27.

    Article  Google Scholar 

  30. Angle JF. Cone-beam CT: vascular applications. Tech Vasc Interv Radiol. 2013;16(3):144–9.

    Article  PubMed  Google Scholar 

  31. Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, et al. Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging. 2009;34(4):502–6.

    Article  PubMed  Google Scholar 

  32. Lin EY, Jones AK, Chintalapani G, Jeng ZS, Ensor J, Odisio BC. Comparative analysis of intra-arterial cone-beam versus conventional computed tomography during hepatic arteriography for transarterial chemoembolization planning. Cardiovasc Intervent Radiol. 2018.

  33. Vano E, Järvinen H, Kosunen A, Bly R, Malone J, Dowling A, et al. Patient dose in interventional radiology: a European survey. Radiat Prot Dosim. 2008;129(1–3):39–45.

    Article  CAS  Google Scholar 

  34. Vano E, Sanchez R, Fernandez JM, Gallego JJ, Verdu JF, de Garay MG, et al. Patient dose reference levels for interventional radiology: a national approach. Cardiovasc Intervent Radiol. 2009;32(1):19–24.

    Article  PubMed  Google Scholar 

  35. Office fédéral de la santé publique, Confédération suisse. Niveaux de référence diagnostiques en radiologie interventionnelle (Notice R-06-05) 2008.

  36. Ruiz-Cruces R, Vano E, Carrera-Magariño F, Moreno-Rodriguez F, Soler-Cantos MM, Canis-Lopez M, et al. Diagnostic reference levels and complexity indices in interventional radiology: a national programme. Eur Radiol. 2016;26(12):4268–76.

    Article  CAS  PubMed  Google Scholar 

  37. Miller DL, Kwon D, Bonavia GH. Reference levels for patient radiation doses in interventional radiology: proposed initial values for US practice. Radiology. 2009;253(3):753–64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauranne Piron.

Ethics declarations

Conflict of interest

Boris Guiu has received honorarium from Canon Medical System for symposium lectures during ECIO, CIRSE, ECR meetings. There is no other relationship to disclose.

Ethical Approval

For this type of study, formal consent is not required. Institutional Review Board approval was obtained.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piron, L., Le Roy, J., Cassinotto, C. et al. Radiation Exposure During Transarterial Chemoembolization: Angio-CT Versus Cone-Beam CT. Cardiovasc Intervent Radiol 42, 1609–1618 (2019). https://doi.org/10.1007/s00270-019-02269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02269-8

Keywords

Navigation