Skip to main content
Log in

Sequential and Simultaneous 4-Antenna Microwave Ablation in an Ex Vivo Bovine Liver Model

  • Laboratory Investigation
  • Non-Vascular Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Aims

To determine the sizes and shapes of ablation zones in 4-antenna microwave ablation in ex vivo bovine liver model under different conditions of power delivery patterns, antenna spacings, and ablation durations, for further using of multi-antenna MWA strategies in the treatment of large hepatocellular carcinoma.

Methods

We tested protocols of eight ablations each on ex vivo bovine livers, involving simultaneous or sequential activation of four microwave antennas, spaced either 3 cm, 4 cm, or 5 cm apart, for either 10 or 15 min, at 60-W power. We determined the diameters, shapes, and temperatures of the ablation zones.

Results

Compared to sequential power delivery, simultaneous power delivery resulted in significantly larger ablation zone diameters (P < .001). The temperatures in ablation zones were significantly higher for simultaneous than for sequential power delivery. The largest ablation diameter (7.45 ± 0.06 cm) resulted from simultaneous delivery for 15 min using 4-cm antenna spacing.

Conclusions

Simultaneous 4-antenna microwave ablation results in larger ablation zones than sequential ablation, and 4-cm antenna spacing with a 15-minute ablation duration creates the largest ablation zone. This information may provide multi-antenna MWA strategies for large HCC in the further clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim YS, Lim HK, Rhim H, Lee MW. Ablation of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2014;28(5):897–908.

    Article  PubMed  Google Scholar 

  2. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology. 2016;150(4):835–53.

    Article  PubMed  Google Scholar 

  3. Xu Y, Shen Q, Wang N, Liu P, Wu P, Peng Z, et al. Percutaneous microwave ablation of 5-6 cm unresectable hepatocellular carcinoma: local efficacy and long-term outcomes. Int J Hyperthermia. 2016;9:1–8.

    Google Scholar 

  4. Dou JPLP, Yu J. Microwave ablation for liver tumors. Abdom Radiol (NY). 2016;41(4):650–8.

    Article  PubMed  Google Scholar 

  5. Harari CM, Magagna M, Bedoya M, Lee FT Jr, Lubner MG, Hinshaw JL, et al. Microwave ablation: comparison of simultaneous and sequential activation of multiple antennas in liver model systems. Radiology. 2016;278(1):95–103.

    Article  PubMed  Google Scholar 

  6. Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients—mathematic model, overlapping mode, and electrode placement process. Radiology. 2004;232(1):260–71.

    Article  PubMed  Google Scholar 

  7. Goldberg SN, Solbiati L, Hahn PF, Cosman E, Conrad JE, Fogle R, et al. Large-volume tissue ablation with radio frequency by using a clustered, internally cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology. 1998;209(2):371–9.

    Article  CAS  PubMed  Google Scholar 

  8. Haemmerich D, Lee FT Jr, Schutt DJ, Sampson LA, Webster JG, Fine JP, et al. Large-volume radiofrequency ablation of ex vivo bovine liver with multiple cooled cluster electrodes. Radiology. 2005;234(2):563–8.

    Article  Google Scholar 

  9. Choi TW, Lee JM, Lee DH, Lee JH, Yu SJ, Kim YJ, et al. Percutaneous dual-switching monopolar radiofrequency ablation using a separable clustered electrode: a preliminary study. Korean J Radiol. 2017;18(5):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoon JH, Lee JM, Hwang EJ, Hwang IP, Baek J, Han JK, et al. Monopolar radiofrequency ablation using a dual-switching system and a separable clustered electrode: evaluation of the in vivo efficiency. Korean J Radiol. 2014;15(2):235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT Jr. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology. 2007;244(1):151–6.

    Article  PubMed  Google Scholar 

  12. Oshima F, Yamakado K, Nakatsuka A, Takaki H, Makita M, Takeda K. Simultaneous microwave ablation using multiple antennas in explanted bovine livers: relationship between ablative zone and antenna. Radiat Med. 2008;26(7):408–14.

    Article  PubMed  Google Scholar 

  13. Wright AS, Lee FT Jr, Mahvi DM. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10(3):275–83.

    Article  PubMed  Google Scholar 

  14. Simon CJ, Dupuy DE, Iannitti DA, Lu DS, Yu NC, Aswad BI, et al. Intraoperative triple antenna hepatic microwave ablation. AJR Am J Roentgenol. 2006;187(4):W333–40.

    Article  PubMed  Google Scholar 

  15. Yu NC, Lu DS, Raman SS, Dupuy DE, Simon CJ, Lassman C, et al. Hepatocellular carcinoma: microwave ablation with multiple straight and loop antenna clusters—pilot comparison with pathologic findings. Radiology. 2006;239(1):269–75.

    Article  PubMed  Google Scholar 

  16. Farina L, Weiss N, Nissenbaum Y, Cavagnaro M, Lopresto V, Pinto R, et al. Characterisation of tissue shrinkage during microwave thermal ablation. Int J Hyperthermia. 2014;30(7):419–28.

    Article  PubMed  Google Scholar 

  17. Ren H, An C, Liang P, Yu J, Cheng Z, Han Z, et al. Ultrasound-guided percutaneous microwave ablation assisted by a three-dimensional visualization treatment platform combined with transcatheter arterial chemoembolization for a single large hepatocellular carcinoma 5 cm or larger: a preliminary clinical application. Int J Hyperthermia. 2018. https://doi.org/10.1080/02656736.2018.1530459.

    Article  PubMed  Google Scholar 

  18. Kang TW, Lim HK, Cha DI. Percutaneous ablation for perivascular hepatocellular carcinoma: refining the current status based on emerging evidence and future perspectives. World J Gastroenterol. 2018;24(47):5331–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dou JP, Yu J, Yang XH, Cheng ZG, Han ZY, Liu FY, et al. Outcomes of microwave ablation for hepatocellular carcinoma adjacent to large vessels: a propensity score analysis. Oncotarget. 2017;8(17):28758–68.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang C, Liu B, Chen S, Peng Z, Xie X, Kuang M. Safety margin after radiofrequency ablation of hepatocellular carcinoma: precise assessment with a three-dimensional reconstruction technique using CT imaging. Int J Hyperthermia. 2018;34(8):1135–41.

    Article  CAS  PubMed  Google Scholar 

  21. Adeyanju OO, Al-Angari HM, Sahakian AV. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol. 2012;46(2):126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sakakibara M, Ohkawa K, Imanaka K, Miyazaki M, Nawa T, Kimura H, et al. Quick and stable parallel puncture of hepatic tumors using a double-barreled needle direction system for ultrasound-guided bipolar radiofrequency ablation. Hepatol Res. 2016;46(11):1152–7.

    Article  PubMed  Google Scholar 

  23. Mulier S, Jiang Y, Wang C, Jamart J, Marchal G, Michel L, et al. Bipolar radiofrequency ablation with four electrodes: ex vivo liver experiments and finite element method analysis. Influence of inter-electrode distance on coagulation size and geometry. Int J Hyperthermia. 2012;28(7):686–97.

    Article  PubMed  Google Scholar 

  24. Brace CL, Sampson LA, Hinshaw JL, Sandhu N, Lee FT Jr. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol. 2009;20(1):118–24.

    Article  PubMed  Google Scholar 

  25. Amabile C, Ahmed M, Solbiati L, Meloni MF, Solbiati M, Cassarino S, et al. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int J Hyperthermia. 2017;33(1):34–42.

    Article  Google Scholar 

  26. Amabile C, Farina L, Lopresto V, Pinto R, Cassarino S, Tosoratti N, et al. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model. Int J Hyperthermia. 2017;33(1):101–9.

    Article  PubMed  Google Scholar 

  27. Farina L, Nissenbaum Y, Cavagnaro M. Tissue shrinkage in microwave thermal ablation: comparison of three commercial devices. Int J Hyperthermia. 2017;16:1–10.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Xin Zheng for providing support and encouragement to Dr. Tianqi Zhang on his scientific research work.

Funding

This work was supported by National Natural Science Foundation of China (No. 81771955), Guangzhou Science and Technology Program, key projects of collaborative innovation of health medicine (No. 201704020228), and Guangzhou Science and Technology Program, key projects of collaborative innovation of production, learning and research (No. 201704020134), Sun Yat-sen University Clinical Trial 5010 Project (No. 2016002).

Author information

Authors and Affiliations

Authors

Contributions

Tian-Qi Zhang and Sen-Miao Huang participated equally in experiments and analyzed the data; Zhi-Mei Huang and Han-Xia Deng finished the statistical analysis; Tian-Qi Zhang finished the manuscript drafting; Yang-Kui Gu and Xiong-Ying Jiang gave the critical revision of the manuscript for important intellectual content; Jin-Hua Huang designed and coordinated the research.

Corresponding author

Correspondence to Jin-hua Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Tq., Huang, Sm., Gu, Yk. et al. Sequential and Simultaneous 4-Antenna Microwave Ablation in an Ex Vivo Bovine Liver Model. Cardiovasc Intervent Radiol 42, 1466–1474 (2019). https://doi.org/10.1007/s00270-019-02241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02241-6

Keywords

Navigation