Skip to main content
Log in

The Role of a Curved Electrode with Controllable Direction in the Radiofrequency Ablation of Liver Tumors Behind Large Vessels

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the role of a novel curved radiofrequency ablation (RFA) electrode with controllable direction in the ablation of tumors behind large hepatic vessels in ex vivo bovine and in vivo canine liver experiments.

Materials and Methods

Approval from the institutional animal care and use committee was obtained. In ex vivo experiments, conventional multi-tines expandable electrodes, conventional monopolar straight electrodes and novel curved electrodes were used in the ablation of the bovine liver (n = 90). The ablated area, parallel axis, vertical axis and shape of different electrodes were compared. Then, 24 beagle dogs (10 months old, female) were used for in vivo experiments. Visual tumor targets deeply located in the portal vein were established, and ultrasound-guided liver ablation was performed with different electrodes. The ablation range, target coverage rate, percentage of normal tissue injury and damage to adjacent vessels were evaluated. The Kruskal–Wallis test and the Chi-squared test were used for statistical analysis.

Results

For the ex vivo study with a 3-cm electrode, the ablation area of the multi-tines expandable electrode group (7.14 ± 0.16 cm2) was significantly larger than that of the novel curved electrode group (5.01 ± 0.30 cm2, P < 0.001) and the monopolar straight electrode group (5.43 ± 0.15 cm2, P < 0.001). The results obtained with the 4-cm electrode in the three groups were in accordance with those of the 3-cm electrode. In vivo, the normal tissue damage area of the novel curved electrode group was smaller than that of the multi-tines expandable electrode group (1.10 ± 0.18 cm2 vs. 4.00 ± 0.18 cm2, P < 0.001). The target coverage rate of the novel curved electrode group was better than that of the monopolar straight electrode group (100% vs. 80.86 ± 1.68%, P < 0.001). The hematoxylin and eosin (H&E) and TUNEL staining results showed that the ablation necrosis area was adjacent to large vessels, but the vascular wall was not significantly damaged in the novel curved electrode group.

Conclusion

Our preliminary results showed that the novel curved RFA electrode with controllable direction could achieve accurate ablation for tumors behind large hepatic vessels, with a better target coverage rate and less damage to normal tissue, than conventional multi-tines expandable electrodes and monopolar straight electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziemlewicz TJ, Wells SA, Lubner MG, Brace CL, Lee FT Jr, Hinshaw JL. Hepatic tumor ablation. Surg Clin North Am. 2016;96(2):315–39. https://doi.org/10.1016/j.suc.2015.12.006.

    Article  PubMed  Google Scholar 

  2. Decadt B, Siriwardena AK. Radiofrequency ablation of liver tumours: systematic review. Lancet Oncol. 2004;5(9):550–60. https://doi.org/10.1016/S1470-2045(04)01567-0.

    Article  PubMed  Google Scholar 

  3. Curley SA. Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol. 2003;10(4):338–47. https://doi.org/10.1634/theoncologist.6-1-14.

    Article  PubMed  Google Scholar 

  4. Lencioni R, Crocetti L. Radiofrequency ablation of liver cancer. Tech Vasc Interv Radiol. 2007;10(1):38–46. https://doi.org/10.1053/j.tvir.2007.08.006.

    Article  PubMed  Google Scholar 

  5. Goldberg SN. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound. 2001;13(2):129–47. https://doi.org/10.1016/S0929-8266(01)00126-4.

    Article  CAS  PubMed  Google Scholar 

  6. McWilliams JP, Yamamoto S, Raman SS, Loh CT, Lee EW, Liu DM, Kee ST. Percutaneous ablation of hepatocellular carcinoma: current status. J Vasc Interv Radiol. 2010;21(8 Suppl):S204–13. https://doi.org/10.1016/j.jvir.2009.11.025.

    Article  PubMed  Google Scholar 

  7. Ikeda K, Osaki Y, Nakanishi H, Nasu A, Kawamura Y, Jyoko K, Sano T, Sunagozaka H, Uchino K, Minami Y, Saito Y, Nagai K, Inokuchi R, Kokubu S, Kudo M. Recent progress in radiofrequency ablation therapy for hepatocellular carcinoma. Oncology. 2014;87(Suppl 1):73–7. https://doi.org/10.1159/000368148.

    Article  PubMed  Google Scholar 

  8. Ni Y, Mulier S, Miao Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging. 2005;30(4):381–400. https://doi.org/10.1007/s00261-004-0253-9.

    Article  CAS  PubMed  Google Scholar 

  9. Terraz S, Constantin C, Majno PE, Spahr L, Mentha G, Becker CD. Image-guided multipolar radiofrequency ablation of liver tumours: initial clinical results. Eur Radiol. 2007;17(9):2253e61. https://doi.org/10.1007/s00330-007-0626-x.

    Article  Google Scholar 

  10. Lin SM, Lin CC, Chen WT, Chen YC, Hsu CW. Radiofrequency ablation for hepatocellular carcinoma: a prospective comparison of four radiofrequency devices. J Vasc Interv Radiol. 2007;18(9):1118–25. https://doi.org/10.1016/j.jvir.2007.06.010.

    Article  PubMed  Google Scholar 

  11. Fu JJ, Wang S, Yang W, Gong W, Jiang AN, Yan K, Chen MH. Protective and heat retention effects of thermo-sensitive basement membrane extract (matrigel) in hepatic radiofrequency ablation in an experimental animal study. Cardiovasc Intervent Radiol. 2017;40(7):1077–85. https://doi.org/10.1007/s00270-017-1617-1.

    Article  PubMed  Google Scholar 

  12. Lee JD, Lee JM, Kim SW, Kim CS, Mun WS. MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol. 2001;2(3):151–8. https://doi.org/10.3348/kjr.2001.2.3.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JM, Han JK, Lee JY, Kim SH, Choi JY, Lee MW, Choi SH, Eo H, Choi BI. Hepatic radiofrequency ablation using multiple probes: ex vivo and in vivo comparative studies of monopolar versus multipolar modes. Korean J Radiol. 2006;7(2):106–17. https://doi.org/10.3348/kjr.2006.7.2.106.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoon JH, Lee JM, Han JK, Choi BI. Dual switching monopolar radiofrequency ablation using a separable clustered electrode: comparison with consecutive and switching monopolar modes in ex vivo bovine livers. Korean J Radiol. 2013;14(3):403–11. https://doi.org/10.3348/kjr.2013.14.3.403.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88(11):2452–63. https://doi.org/10.1002/1097-0142(20000601)88:11%3c2452:AID-CNCR5%3e3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  16. Lee ES, Lee JM, Kim KW, Lee IJ, Han JK, Choi BI. Evaluation of the in vivo efficiency and safety of hepatic radiofrequency ablation using a 15-G Octopus® in pig liver. Korean J Radiol. 2013;14:194–201. https://doi.org/10.3348/kjr.2013.14.2.194.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao J, Wang SH, Ding XM, Sun WB, Li XL, Xin ZH, Ning CM, Guo SG. Radiofrequency ablation for single hepatocellular carcinoma 3 cm or less as first-line treatment. World J Gastroenterol. 2015;21(17):5287–94. https://doi.org/10.3748/wjg.v21.i17.5287.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yan K, Chen MH, Yang W, Wang YB, Gao W, Hao CY, Xing BC, Huang XF. Radiofrequency ablation of hepatocellular carcinoma: long-term outcome and prognostic factors. Eur J Radiol. 2008;67(2):336–47. https://doi.org/10.1016/j.ejrad.2007.07.007.

    Article  PubMed  Google Scholar 

  19. Lee YH, Hsu CY, Chu CW, Liu PH, Hsia CY, Huang YH, Su CW, Chiou YY, Lin HC, Huo TI. Radiofrequency ablation is better than surgical resection in patients with hepatocellular carcinoma within the Milan criteria and preserved liver function: a retrospective study using propensity score analyses. J Clin Gastroenterol. 2015;49(3):242–9. https://doi.org/10.1097/MCG.0000000000000133.

    Article  PubMed  Google Scholar 

  20. Solbiati L, Ahmed M, Cova L, Ierace T, Brioschi M, Goldberg SN. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology. 2012;265(3):958–68. https://doi.org/10.1148/radiol.12111851.

    Article  Google Scholar 

  21. Rhim H, Lim HK, Kim YS, Choi D, Lee WJ. Radiofrequency ablation of hepatic tumors: lessons learned from 3000 procedures. J Gastroenterol Hepatol. 2008;23(10):1492–500. https://doi.org/10.1111/j.1440-1746.2008.05550.x.

    Article  PubMed  Google Scholar 

  22. Appelbaum L, Sosna J, Pearson R, Perez S, Nissenbaum Y, Mertyna P, Libson E, Goldberg SN. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology. 2010;254(2):430–40. https://doi.org/10.1148/radiol.09090207.

    Article  PubMed  Google Scholar 

  23. Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities–part II. J Vasc Interv Radiol. 2001;12(10):1135–48. https://doi.org/10.1016/S1051-0443(07)61670-4.

    Article  CAS  PubMed  Google Scholar 

  24. Stippel DL, Bangard C, Prenzel K, Yavuzyasar S, Fischer JH, Hölscher AH. Which parameters are needed for targeting a multitined radiofrequency device: an approach to a simple algorithm. Langenbecks Arch Surg. 2009;394(4):671–9. https://doi.org/10.1007/s00423-008-0306-6.

    Article  PubMed  Google Scholar 

  25. Cha J, Kim YS, Rhim H, Lim HK, Choi D, Lee MW. Radiofrequency ablation using a new type of internally cooled electrode with an adjustable active tip: an experimental study in ex vivo bovine and in vivo porcine livers. Eur J Radiol. 2011;77(3):516–21. https://doi.org/10.1016/j.ejrad.2009.09.011.

    Article  PubMed  Google Scholar 

  26. Ni Y, Miao Y, Mulier S, Yu J, Baert AL, Marchal G. A novel “cooled-wet” electrode for radiofrequency ablation. Eur Radiol. 2000;10(5):852–4. https://doi.org/10.1007/s003300051018.

    Article  CAS  PubMed  Google Scholar 

  27. Furse A, Miller BJ, McCann C, Kachura JR, Jewett MA, Sherar MD. Radiofrequency coil for the creation of large ablations: ex vivo and in vivo testing. J Vasc Interv Radiol. 2012;23(11):1522–8. https://doi.org/10.1016/j.jvir.2012.08.015.

    Article  PubMed  Google Scholar 

  28. Kim JH, Won HJ, Shin YM, Kim SH, Yoon HK, Sung KB, Kim PN. Medium-sized (3.1-5.0 cm) hepatocellular carcinoma: transarterial chemoembolization plus radiofrequency ablation versus radiofrequency ablation alone. Ann Surg Oncol. 2011;18(6):1624–9. https://doi.org/10.1245/s10434-011-1673-8.

    Article  PubMed  Google Scholar 

  29. Zhu K, Huang J, Lai L, Huang W, Cai M, Zhou J, Guo Y, Chen J. Medium or large hepatocellular carcinoma: sorafenib combined with transarterial chemoembolization and radiofrequency ablation. Radiology. 2018;288(1):300–7. https://doi.org/10.1148/radiol.2018172028.

    Article  PubMed  Google Scholar 

  30. Yuan H, Liu F, Li X, Guan Y, Wang M. Transcatheter arterial chemoembolization combined with simultaneous DynaCT-guided radiofrequency ablation in the treatment of solitary large hepatocellular carcinoma. Radiol Med. 2018. https://doi.org/10.1007/s11547-018-0932-1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Francica G, Meloni MF, Riccardi L, de Sio I, Terracciano F, Caturelli E, Iadevaia MD, Amoruso A, Roselli P, Chiang J, Scaglione M, Pompili M. Ablation treatment of primary and secondary liver tumors under contrast-enhanced ultrasound guidance in field practice of interventional ultrasound centers. A multicenter study. Eur J Radiol. 2018;105:96–101. https://doi.org/10.1016/j.ejrad.2018.05.030.

    Article  PubMed  Google Scholar 

  32. Noeren N, Nijkamp MW, Berendsen T, Govaert KM, van Kessel CS, Borel Rinkes IH, van Hillegersberg R. Multipolar radiofrequency ablation for colorectal liver metastases close to major hepatic vessels. Surgeon. 2015;13(2):77–82. https://doi.org/10.1016/j.surge.2013.11.013.

    Article  Google Scholar 

  33. Haemmerich D, Wright AW, Mahvi DM, Lee FT Jr, Webster JG. Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput. 2003;41:317e23. https://doi.org/10.1007/BF02348437.

    Article  Google Scholar 

  34. Lu DS, Raman SS, Limanond P, Aziz D, Economou J, Busuttil R, Sayre J. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74. https://doi.org/10.1097/01.RVI.0000092666.72261.6B.

    Article  PubMed  Google Scholar 

  35. Ahmed M, Liu Z, Afzal KS, Weeks D, Lobo SM, Kruskal JB, Lenkinski RE, Goldberg SN. Radiofrequency ablation: effect of surrounding tissue composition on coagulation necrosis in a canine tumor model. Radiology. 2004;230(3):761–7. https://doi.org/10.1148/radiol.2303021801.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81773286) and the Capital Characteristic Clinical Application Foundation (No. Z161100000516061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standard

All procedures performed in studies involving animals were in accordance with the ethical standards of the Institutional Animal Care and Use Committee (Peking University, Cancer Hospital). All applicable institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, AN., Wang, S., Yang, W. et al. The Role of a Curved Electrode with Controllable Direction in the Radiofrequency Ablation of Liver Tumors Behind Large Vessels. Cardiovasc Intervent Radiol 42, 893–904 (2019). https://doi.org/10.1007/s00270-019-02182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02182-0

Keywords

Navigation