Skip to main content
Log in

Experimental and theoretical study of the vibrational properties of diaspore (α-AlOOH)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Vibrational properties of diaspore, α-AlOOH, have been re-investigated using room-temperature single-crystal Raman spectroscopy and low-temperature powder infrared (IR) transmission spectroscopy. First-principles harmonic calculations based on density functional theory provide a convincing assignment of the major Raman peaks and infrared absorption bands. The large width of the Raman band related to OH stretching modes is ascribed to mode–mode anharmonic coupling due to medium-strength H-bonding. Additional broadening in the powder IR spectrum arises from depolarization effects in powder particles. The temperature dependence of the IR spectrum provides a further insight into the anharmonic properties of diaspore. Based on their frequency and temperature behavior, narrow absorption features at ~2,000 cm−1 and anti-resonance at ~2,966 cm−1 in the IR spectrum are interpreted as overtones of fundamental bending bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balan E, Saitta AM, Mauri F, Calas G (2001) First-Principles modeling of the infrared spectrum of kaolinite. Am Mineral 86:1321–1330

    Google Scholar 

  • Balan E, Saitta AM, Mauri F, Lemaire C, Guyot F (2002) First-principles calculation of the infrared spectrum of lizardite. Am Mineral 87:1286–1290

    Google Scholar 

  • Balan E, Lazzeri M, Morin G, Mauri F (2006) First-Principles study of the OH-stretching modes of gibbsite. Am Mineral 91:115–119

    Article  Google Scholar 

  • Balan E, Lazzeri M, Delattre S, Meheut M, Refson K, Winkler B (2007) Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates: assessment from first-principles frozen-phonon calculations. Phys Chem Miner 34:621–625

    Article  Google Scholar 

  • Balan E, Refson K, Blanchard M, Delattre S, Lazzeri M, Ingrin J, Mauri F, Wright K, Winkler B (2008a) Theoretical infrared absorption coefficient of OH groups in minerals. Am Mineral 93:950–953

    Article  Google Scholar 

  • Balan E, Blanchard M, Hochepied J-F, Lazzeri M (2008b) Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Phys Chem Miner 35:279–285

    Article  Google Scholar 

  • Balan E, Delattre S, Guillaumet M, Salje EKH (2010) Low-temperature infrared spectroscopic study of OH stretching modes in kaolinite and dickite. Am Mineral 95:1257–1266

    Article  Google Scholar 

  • Balan E, Delattre S, Roche D, Segalen L, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Brouder C, Salje EKH (2011) Line-broadening effects in the powder infrared spectrum of apatite. Phys Chem Miner 38:111–122

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–561

    Article  Google Scholar 

  • Bernard S, Beyssac O, Benzerara K (2008) Raman mapping using advanced line-scanning systems: geological applications. Appl Spec 62:1180–1188

    Article  Google Scholar 

  • Brüesch P (1983) Phonons: theory and experiment I. Springer, Verlag

    Google Scholar 

  • Busing WR, Levy HA (1958) A single crystal neutron diffraction study of diaspore, AlO(OH). Acta Crystallogr 11:798–803

    Article  Google Scholar 

  • Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574

    Article  Google Scholar 

  • Demichelis R, Noel Y, Civalleri B, Roetti C, Ferrero M, Dovesi R (2007) The vibrational spectrum of α-AlOOH diaspore: an ab initio study with the CRYSTAL code. J Phys Chem B 111:9337–9346

    Article  Google Scholar 

  • Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E (2002) Structure and stability of aluminum hydroxides: a theoretical study. J Phys Chem B 106:5155–5162

    Article  Google Scholar 

  • Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866

    Google Scholar 

  • Feenstra A, Wunder B (2002) Dehydration of diasporite to corundite in nature and experiment. Geology 30:119–122

    Article  Google Scholar 

  • Friedrich A, Wilson DJ, Haussühl E, Winkler B, Morgenroth W, Refson K, Milmnan V (2007a) High pressure properties of diaspore. Phys Chem Miner 34:145–157

    Article  Google Scholar 

  • Friedrich A, Haussühl E, Boehler R, Morgenroth W, Juarez-Arellano EA, Winkler B (2007b) Single-crystal structure refinement of diaspore at 50 GPa. Am Mineral 92:1640–1644

    Article  Google Scholar 

  • Fritsch E, Morin G, Bedidi A, Bonnin D, Balan E, Caquineau S, Calas G (2005) Transformation of haematite and Al-poor goethite to Al-rich goethite and associated yellowing in a ferralitic clay soil profile of the middle Amazon basin (Manaus, Brazil). Eur J Soil Sci 56:575–588

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Mat 21:395502

    Article  Google Scholar 

  • Henri-Rousseau O, Blaise P (1999) Anharmonic effects on theoretical IR line shapes of H-bonds. Chem Phys 250:249–265

    Article  Google Scholar 

  • Hill RJ (1979) Crystal structure refinement and electron density distribution in diaspore. Phys Chem Miner 5:179–200

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metam Geol 16:309–343

    Article  Google Scholar 

  • Kohler T, Armbruster T, Libowitzky E (1997) Hydrogen bonding and Jahn-Teller distorsion in groutite, α-MnOOH, and manganite, γ-MnOOH and their relations to the manganese dioxides ramsdellite and pyrolusite. J Solid State Chem 133:486–500

    Article  Google Scholar 

  • Kolesova VA, Ryskin YI (1962) Infrared absorption spectra of diaspore (α-AlOOH). Boehmite (γ-AlOOH) and GaOOH. J Struct Chem 3:656–659

    Article  Google Scholar 

  • Lazzeri M, Mauri F (2003) First-principles calculation of vibrational Raman spectra in large xystems: Signature of xmall rings in crystalline SiO2. Phys Rev Let 90:03641

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of OH stretching frequencies and O-H.O hydrogen bond length in minerals. Mh Chem 130:1047–1059

    Google Scholar 

  • Maréchal Y, Bratos S (1978) Infrared and Raman spectra of hydrogen bonded liquids. Effect of electrical anharmonicity on profiles of hydrogen stretching bands. J Chem Phys 68:1825

    Google Scholar 

  • Maréchal Y, Witkowski A (1968) Infrared spectra of H-bonded systems. J Chem Phys 48:3697

    Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2010) First-principles calculation of H/D isotopic fractionation between hydrous minerals and water. Geochim Cosmochim Acta 74:3874–3882

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Rosso K, Rustad JR (2001) Stuctures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations. Am Miner 86:312–317

    Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT (2001) Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J Raman Spectrosc 32:745–750

    Article  Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT, Duong L (2002) Far-infrared spectroscopy of alumina phases. Spectrochimica Acta Part A 58:265–272

    Article  Google Scholar 

  • Safarik DJ, Salje EKH, Lashley JC (2010) Spectral analysis of Resonance Ultrasonic Spectroscopy: Kramers–Kronig analysis, Fano profiles, and the case of precursor softening in SnTe:Cr. Appl Phys Lett 97:111907

    Article  Google Scholar 

  • Salje EKH, Bismayer U (1997) Hard mode spectroscopy: the concept and applications. Phase Transitions 63:1–75

    Article  Google Scholar 

  • Salje EKH, Wruck B, Marais S (1991) Order parameter saturation at low temperatures -numerical results for displacive and O/D systems. Ferroelectrics 124:185–188

    Article  Google Scholar 

  • Salje EKH, Carpenter MA, Malcherek T, Boffa Balaran T (2000) Autocorrelation analysis of infrared spectra from minerals. Eur J Miner 12(3):503–519

    Google Scholar 

  • San Juan-Farfan RE, Bayarjargal L, Winkler B, Haussühl E, Avalos-Borja M, Refson K, Milman V (2011) Pressure dependence of the lattice dynamics of diaspore, α-AlO(OH), from Raman spectroscopy and density functional perturbation theory. Phys Chem Miner 38:693–700

  • Schlüter J, Klaska KH, Adiwidjaja G, Gebbard G (2003) Tsumgallite, GaO(OH), a new mineral from the Tsumeb mine, Tsumeb, Namibia. Neues Jb Mineral Mh 11:521–527

    Article  Google Scholar 

  • Schwarzmann E, Marsmann H (1966) Zur deutung der IR-spektrenfester hydroxyde mit wasserstoffbrückenbindung. Naturwiss 53:349–352

    Article  Google Scholar 

  • Schwarzmann E, Sparr H (1969) Die wasserstoffbrückenbindung in hydroxyden mit diasporstruktur. Z Naturforschg 24B:8–11

    Google Scholar 

  • Scott JF (1974) Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev Mod Phys 46:83–128

    Article  Google Scholar 

  • Serna CJ, Ocana M, Iglesias JE (1987) Optical properties of α-Fe2O3 microcrystals in the infrared. J Phys C Solid State Phys 20:473–484

    Article  Google Scholar 

  • Stegmann C, Vivien D, Mazières C (1973) Etude des mode de vibration des oxyhydroxydes d’aluminium boehmite et diaspore. Spectrochimica Acta 29A:1653–1663

    Google Scholar 

  • Trolard F, Tardy Y (1987) The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochimica and Cosmochimica Acta 51:945–957

    Google Scholar 

  • Valeton I (1972) Bauxites. Developments in soil science. Elsevier, Amsterdam

    Google Scholar 

  • Winkler B, Hytha M, Pickard C, Milman V, Warren M, Segall M (2001) Theoretical bonding in diaspore. Eur J Mineral 13:343–349

    Article  Google Scholar 

  • Winkler B, Friedrich A, Wilson DJ, Haussühl E, Refson K, Milman V (2008) Dispersion relation of an OH-stretching vibration from inelastic X-ray scattering. Phys Rev Lett 101:065501

    Article  Google Scholar 

  • Yagil Y, Baudenbacher F, Zhang M, Birch JR, Kinder H, Salje EKH (1995) Optical properties of YBa2Cu3O7-d thin films. Phys RevB 52:15582–15591

    Article  Google Scholar 

  • Zhang M, Salje EKH, Carpenter MA, Wang JY, Groat LA, Lager GA, Wang L, Beran A, Bismayer U (2007) Temperature dependence of IR absorption of hydrous/hydroxylspecies in minerals and synthetic materials. Am Mineral 92:1502–1517

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed using HPC resources from GENCI-IDRIS (Grant 2010-i2010041519). E.B. thanks Ch. Brouder (IMPMC) for enlightening discussions. The Raman microspectrometer at IMPMC Paris has been funded by the ANR JCJC program (project GeoCARBONS, PI O. Beyssac).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Balan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delattre, S., Balan, E., Lazzeri, M. et al. Experimental and theoretical study of the vibrational properties of diaspore (α-AlOOH). Phys Chem Minerals 39, 93–102 (2012). https://doi.org/10.1007/s00269-011-0464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0464-x

Keywords

Navigation