Skip to main content
Log in

Modification to the crystal structure of chlorite during early stages of its dissolution

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Early stage processes of Mg-rich chlorite (clinochlore) dissolution were examined, focusing especially on the structural modification at grain edges during dissolution. Focused ion beam transmission electron microscopy sample preparation was applied to crystals dissolved in a flow-through reaction system at pH 3.0 and 25°C for 31 days. The obtained Si and Mg dissolution rates are −11.49 and −11.14 (logR, mol/(m2/s)), respectively, implying dissolution is non-stoichiometric. TEM-EDX analyses of dissolved samples reveal the development of 20–50-nm thick amorphous zone at an outermost rim with a chemical gradient of Mg, lower towards the solid surface, and Si enrichment in this amorphous zone. Crystalline material is partially interwoven with amorphous one at the interface between the amorphous and crystalline regions. These results indicate that the amorphous zone was produced by selective leaching of cations except for Si. Chlorite dissolution may proceed via the formation and thickening of leached layer as a by-product of release to solution of Si at slightly slower rate than Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aspandiar MF, Eggleton RA (2002) Weathering of chlorite: I. Reactions and products in microsystems controlled by the primary mineral. Clays Clay Miner 50:685–698. doi:10.1346/000986002762090227

    Article  Google Scholar 

  • Banfield JF, Murakami T (1998) Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite. Am Mineral 83:348–357

    Google Scholar 

  • Banfield JF, Ferruzi GG, Casey WH, Westrich HR (1995) HRTEM study comparing naturally and experimentally weathered pyroxenoids. Geochim Cosmochim Acta 59:19–31. doi:10.1016/0016-7037(94)00372-S

    Article  Google Scholar 

  • Barnhisel RI, Bertsch PM (1989) Chlorites and hydroxyl-interlayered vermiculite and smectite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, Wisconsin, pp 729–788

    Google Scholar 

  • Bickmore BR, Bosbach D, Hochella MF, Charlet L, Rufe E (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: implication for phyllosilicate edge surface structures and dissolution mechanisms. Am Mineral 86:411–423

    Google Scholar 

  • Brandt F, Bosbach D, Krawczyk-Bärsch E, Arnold T, Bernhard G (2003) Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach. Geochim Cosmochim Acta 67:1451–1461. doi:10.1016/S0016-7037(02)01293-0

    Article  Google Scholar 

  • Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold GW (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366:251–256. doi:10.1038/366253a0

    Article  Google Scholar 

  • Gustafsson ÅB, Puigdomenech I (2003) The effect of pH on chlorite dissolution rates at 25°C. Mat Res Soc Symp Proc 757:649–655

    Google Scholar 

  • Hamer M, Graham RC, Amrheim C, Bozhilov KN (2003) Dissolution of ripidolite (Mg, Fe-chlorite) in organic and inorganic acid solution. Soil Sci Soc Am J 67:654–661

    Google Scholar 

  • Heaney PJ, Vicenzi EP, Giannuzzi LA, Livi KJT (2001) Focused ion beam milling: a method of site-specific sample extraction for microanalysis of earth and planetary materials. Am Mineral 86:1094–1099

    Google Scholar 

  • Hellmann R, Penisson JM, Hervig RL, Thomassin JH, Abrioux MF (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution–reprecipitation. Phys Chem Miner 30:192–197. doi:10.1007/s00269-003-0308-4

    Article  Google Scholar 

  • Hodson ME (2006) Does reactive surface area depend on grain size? Results from pH 3, 25°C far-from equilibrium flow-through dissolution experiments on anorthite and biotite. Geochim Cosmochim Acta 70:1655–1667. doi:10.1016/j.gca.2006.01.001

    Article  Google Scholar 

  • Kalinowski BE, Schweda P (1996) Kinetics of muscovite, phlogopite and biotite dissolution and alteration at pH 1–4, room temperature. Geochim Cosmochim Acta 60:367–385. doi:10.1016/0016-7037(95)00411-4

    Article  Google Scholar 

  • Kameda J, Saruwatari K, Beaufort D, Kogure T (2008) Textures and polytypes in vermiform kaolins diagenetically formed in a sandstone reservoir: a FIB-TEM investigation. Eur J Mineral 20:199–204. doi:10.1127/0935-1221/2008/0020-1806

    Article  Google Scholar 

  • Kilaas R (1998) Optical and near-optical filters in high-resolution electron microscopy. J Microsc 190:45–51. doi:10.1046/j.1365-2818.1998.3070861.x

    Article  Google Scholar 

  • Kodama H, Schnitzer M (1973) Dissolution of chlorite minerals by fulvic acid. Can J Soil Sci 53:240–243

    Article  Google Scholar 

  • Lee MR, Bland PA, Graham G (2003) Preparation of TEM samples by focused ion beam (FIB) techniques: applications to the study of clays and phyllosilicates in meteorites. Min Mag (Lond) 67:581–592. doi:10.1180/0026461036730119

    Article  Google Scholar 

  • Lee MR, Brown DJ, Smith CL, Hodson ME, Mackenzie M, Hellmann R (2007) Characterization of mineral surfaces using FIB and TEM: a case study of naturally weathered alkali feldspars. Am Mineral 92:1383–1394. doi:10.2138/am.2007.2453

    Article  Google Scholar 

  • Lee MR, Hodson ME, Brown DJ, Mackenzie M, Smith CL (2008) The composition and crystallinity of the near-surface regions of weathered alkali feldspars. Geochim Cosmochim Acta 72:4962–4975. doi:10.1016/j.gca.2008.08.001

    Article  Google Scholar 

  • Lowson RT, Comarmond MCJ, Rajaratnam G, Brown PL (2005) The kinetics of the dissolution of chlorite as a function of pH and at 25°C. Geochim Cosmochim Acta 69:1687–1699. doi:10.1016/j.gca.2004.09.028

    Article  Google Scholar 

  • Lowson RT, Brown PL, Comarmond MCJ, Rajaratnam G (2007) The kinetics of chlorite dissolution. Geochim Cosmochim Acta 71:1431–1447. doi:10.1016/j.gca.2006.12.008

    Article  Google Scholar 

  • Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36:35–50. doi:10.1016/0016-7037(72)90119-6

    Article  Google Scholar 

  • Malmström M, Banwart S (1997) Biotite dissolution at 25°C: the pH dependence of dissolution rate and stoichiometry. Geochim Cosmochim Acta 61:2779–2799. doi:10.1016/S0016-7037(97)00093-8

    Article  Google Scholar 

  • Malmström M, Banwart S, Lewenhagen J, Duro L, Bruno J (1996) The dissolution of biotite and chlorite at 25°C in the near neutral region. J Contam Hydrol 21:201–213. doi:10.1016/0169-7722(95)00047-X

    Article  Google Scholar 

  • May HM, Acker JG, Smyth JR, Bricker OP, Dyar MD (1995) Aqueous dissolution of low-iron chlorite in dilute acid solutions at 25°C. In: 32nd annual meeting of Clay Minerals Society, pp 88

  • Nickel EH, Nichols MC (1991) Mineral reference manual. Van Nostrand Reinhold, New York

    Google Scholar 

  • Ohnishi T, Koike H, Ishitani T, Tomimatsu S, Umemura K, Kamino T (1999) A new focused-ion beam microsampling technique for TEM observation of site-specific areas. In: Proceedings of the 25th international symposium for testing and failure analysis, pp 449–453

  • Paces T (1973) Steady-state kinetics and equilibrium between ground water and granitic rock. Geochim Cosmochim Acta 37:2641–2663. doi:10.1016/0016-7037(73)90270-6

    Article  Google Scholar 

  • Petit JC, Della Mea G, Dran JC, Magonthier MC, Mando PA, Paccagnella A (1990) Hydrated layer formation during dissolution of complex silicate glasses and minerals. Geochim Cosmochim Acta 54:1941–1955. doi:10.1016/0016-7037(90)90263-K

    Article  Google Scholar 

  • Rochelle CA, Bateman K, MacGregor R, Pearce JM, Savage D, Wetton PD (1996) Experimental determination of chlorite dissolution rates. Mat Res Soc Symp Proc 353:149–156

    Google Scholar 

  • Ross GJ (1967) Kinetics of acid dissolution of an orthochlorite mineral. Can J Chem 45:3031–3034. doi:10.1139/v67-491

    Article  Google Scholar 

  • Rufe E, Hochella MF (1999) Quantitative assessment of reactive surface area of phlogopite during acid dissolution. Science 285:874–876. doi:10.1126/science.285.5429.874

    Article  Google Scholar 

  • Sasaki H, Matsuda T, Kato T, Muroga T, Iijima Y, Saitoh T, Iwase F, Yamada Y, Izumi T, Shiohara Y, Hirayama T (2004) Specimen preparation for high-resolution transmission electron microscopy using focused ion beam and Ar ion milling. J Electron Micoscopy 53:497–500. doi:10.1093/jmicro/dfh067

    Article  Google Scholar 

  • Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund

    Google Scholar 

  • Techer I, Advocat T, Lancelot J, Liotard JM (2001) Dissolution kinetics of basaltic glasses: control by solution chemistry and protective effect on the alteration film. Chem Geol 176:235–263. doi:10.1016/S0009-2541(00)00400-9

    Article  Google Scholar 

  • Tisserand D, Hellmann R (2008) Bridging the ‘gap’ between laboratory dissolution and natural chemical weathering. Geochim Cosmochim Acta 72(Spec)(Suppl):A948

  • Turpault MP, Trotignon L (1994) The dissolution of biotite single crystals in dilute HNO3 at 24°C: evidence of an anisotropic corrosion process of mica in acidic solutions. Geochim Cosmochim Acta 58:2761–2775. doi:10.1016/0016-7037(94)90112-0

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (JK) was financially supported by JSPS Research Fellowship for Young Scientists. This work was partly supported by a Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology to TM. Martin Lee and one anonymous reviewer are thanked for their critical comments which helped to improve the manuscript. Most of microscopy studies were carried out at the Electron Microbeam Analysis Facility for Mineralogy at the Department of Earth and Planetary Science, the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Murakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, J., Sugimori, H. & Murakami, T. Modification to the crystal structure of chlorite during early stages of its dissolution. Phys Chem Minerals 36, 537–544 (2009). https://doi.org/10.1007/s00269-009-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0299-x

Keywords

Navigation