Skip to main content
Log in

Crystal chemistry of titanite-structured compounds: the CaTi1-xZr x OSiO4 (x≤0.5) series

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Inhomogeneous aggregates of late-stage titanite enriched in Zr have been described recently from post-magmatic parageneses in silica-undersaturated rocks. In the natural samples, simple isovalent substitution of the large Zr ([vi]R4+=0.72 Å) for Ti ([vi]R4+=0.605 Å) is limited to an empirical maximum of 0.25 afu (15.3 wt.% ZrO2). As the natural material is not suitable for crystallographic study, a series of CaTi1-xZr x OSiO4 titanite samples have been synthesized by standard ceramic methods at ambient pressure in air, and their crystal structure determined by Rietveld refinement of laboratory powder X-ray diffraction patterns. All of the synthetic Zr-doped titanite varieties adopt space group A2/a and consist of distorted CaO7 polyhedra together with less distorted (Ti1-xZr x )O6 octahedra and SiO4 tetrahedra. Cell dimensions and atomic coordinates together with volumes and distortion indices are given for all polyhedra. The empirical limit for Zr substitution in synthetic (F,OH)-free titanite is 0.5 afu (29.6 wt.% ZrO2). The existence of a Zr analogue of titanite in nature is considered to be unlikely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angel RJ, Kunz M, Miletich R, Woodland AB, Koch M. Xirochakis D (1999) High-pressure phase transitions in CaTiOSiO4 titanite. Phase Transit 68:533–543

    Google Scholar 

  • Balić-Žunić T, Vicković I (1996) IVTON—a program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Google Scholar 

  • Brugger J, Gieré R (1999) As, Sb, Be and Ce enrichment in minerals from a metamorphosed Fe-Mn deposit, Val Ferrera, eastern Swiss Alps. Can Mineral 37:37–52

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite-amphibole-clinopyroxene rock from Afrikanda Complex, Kola peninsula, Russia: mineralogy and possible link to carbonatites. III. Silicate minerals. Can Mineral 40: 1347–1374

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Mitchell RH (2003) Titanite in carbonatitic rocks: Genetic dualism and geochemical significance. Per Mineral Spec Issue Eurocarb 72:107–113

    Google Scholar 

  • Chrosch J, Bismayer U, Salje EKH (1997) Anti-phase boundaries and phase transitions in titanite: an X-ray diffraction study. Am Mineral 82:677–681

    Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. J Petrol 36:797–826

    Google Scholar 

  • Della Ventura G, Bellatrecia F, Williams CT (1999) Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latinum, Italy). Mineral Mag 63:123–130

    Google Scholar 

  • Dowty E (1999) Atoms 5.0. By Shape Software, Kingsport, TN 37663, USA, http://shapesoftware.com/

  • Franke W, Ghobarkar H (1980) The morphology of titanite grown from aqueous supercritical solutions. N Jahrb Mineral Monath 12:564–568

    Google Scholar 

  • Ghose S, Yoshiaki I, Hatch DM (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. I. A high-temperature X-ray diffraction study of the order parameter and transition mechanism. Phys Chem Mineral 17:591–603

    Google Scholar 

  • Gianetti B, Luhr F (1983) The white trachytic tuff of Roccamonfina Volcano (Rome Region, Italy). Contrib Mineral Petrol 84:235–252

    Google Scholar 

  • Higgins JB, Ribbe PH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888

    Google Scholar 

  • Higgins JB, Ribbe PH (1977) The structure of malayaite, CaSnOSiO4, a tin analog of titanite. Am Mineral 62:801–806

    Google Scholar 

  • Hughes JM, Bloodaxe ES, Hanchar JM, Foord EE (1997) Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries. Am Mineral 82:512–516

    Google Scholar 

  • Kek S, Aroyo M, Bismayer U, Schmidt C, Eichhorn K, Krane HG (1997) The two-step phase transition of titanite, CaTiSiO5: a synchrotron radiation study. Zeitschr Kristallog 212:9–19

    Google Scholar 

  • Kern AA, Coelho AA (1998) Topas 2.1. Bruker Axs. http://www.bruker-axs.com

  • Khomyakov AP (1995) Mineralogy of hyperagpaitic alkaline rocks. Oxford Clarendon Press, pp 223

  • Kunz M, Brown ID (1994) Out-of-center distortions around octahedrally coordinated d0 -transition metals. J Solid State Chem 115:395–406

    Google Scholar 

  • Kunz M, Xirouchakis D, Lindsley DH, Häusermann D (1996) High-pressure phase transition in titanite (CaTiOSiO4). Am Mineral 81:1527–1530

    Google Scholar 

  • Kunz M, Arlt T, Stolz J (2000) In situ powder diffraction study of titanite (CaTiOSiO4) at high pressure and high temperature. Am Mineral 85:1465–1473

    Google Scholar 

  • Makovicky E, Balić-Žunić T (1998) New measure of distortion for coordination polyhedra. Acta Cryst B54:766–773

    Google Scholar 

  • Malcherek T (2001) Spontaneous strain in synthetic titanite, CaTiOSiO4. Miner Mag 65:709–715

    Google Scholar 

  • McNear E, Vincent M, Parthé E (1976) The crystal structure of vuagnaite. Am Mineral 61:831–838

    Google Scholar 

  • Mitchell RH, Ross KC, Potter EG (2004) Crystal structures of CsFe2S3 and RbFe2S3: synthetic analogs of rasvumite KFe2S3. J Solid State Chem 177:1867–1872

    Google Scholar 

  • Oberti R, Smith DC, Rossi G, Caucia F (1991) The crystal chemistry of high-aluminium titanites. Eur J Mineral 3:777–792

    Google Scholar 

  • Paterson BA, Stephens WE (1992) Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contrib Mineral Petrol 109:373–385

    Google Scholar 

  • Reguir EP, Chakhmouradian AR, Evdokimov MD (1999) The mineralogy of a unique baratovite- and miserite-bearing quartz-albite-aegirine rock from the Dara-i-Pioz Complex, Northern Tajikistan. Can Mineral 37:1369–1384

    Google Scholar 

  • Ringwood AE, Kesson SE, Reeve KD, Levins DM, Ramm EJ (1988) SYNROC. In: Lutze W, Ewing RC (eds) Radioactive waste forms for the future. North Holland, Amsterdam, pp 233–334

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Google Scholar 

  • Sahama TG (1946) On the chemistry of mineral titanite. CR Soc Geol Finlande 19(139):88–120

    Google Scholar 

  • Salje E, Schmidt C, Bismayer U (1993) Structural phase transitions in titanite, CaTiSiO5: a Raman spectroscopic study. Phys Chem Mineral 19:502–506

    Google Scholar 

  • Sarp H, Bertrand J, McNear E (1976) Vuagnatite, CaAl(OH)SiO4, a new natural calcium aluminium nesosilicate. Am Mineral 61:825–830

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Siefert W, Kramer W (2003) Accessory titanite: an important carrier of zirconium in lamprophyres. Lithos 71:81–98

    Google Scholar 

  • Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am Mineral 61:238–247

    Google Scholar 

  • Takenouchi, S (1971) Hydrothermal synthesis and consideration of the genesis of malayaite. Mineral Deposita 6:335–347

    Google Scholar 

  • Taylor M, Brown, GE (1976) High-temperature structural study of the P21/a↔A2/a phase transition in synthetic titanite, CaTiSiO5. Am Mineral 61:435–437

    Google Scholar 

  • Tiepolo M, Oberti R, Vanucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  CAS  Google Scholar 

  • Troitzsch U, Ellis DJ, Thompson J, Fitz-Gerald J (1999) Crystal structure changes in titanite along the join TiO–AlF. Eur J Mineral 11:955–965

    Google Scholar 

  • Troitzsch U, Ellis DJ (1999) The synthesis and crystal structure of CaAlFSiO4, the Al-F analog of titanite. Am Mineral 84:1162–1169

    Google Scholar 

  • Troitzsch U, Ellis DJ (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4. Contrib Mineral Petrol 142:543–563

    Google Scholar 

  • Van Heurk C, van Tendeloo G, Ghose S, Amelinckx S (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. II. Electron diffraction and electron microscopic studies of the transition dynamics. Phys Chem Mineral 17:604–610

    Google Scholar 

  • Wooley AR, Platt RG, Eby N (1992) Niobian titanite from the Ilomba nepheline syenite complex, north Malawi. Mineral Mag 56:428–430

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada and Lakehead University (Canada). We are grateful to Allan MacKenzie for assistance with the analytical work, and Anne Hammond for sample preparation. The constructive criticism of an initial draft of the manuscript by two reviewers is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger H. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liferovich, R.P., Mitchell, R.H. Crystal chemistry of titanite-structured compounds: the CaTi1-xZr x OSiO4 (x≤0.5) series. Phys Chem Minerals 32, 40–51 (2005). https://doi.org/10.1007/s00269-004-0441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-004-0441-8

Keywords

Navigation