Skip to main content
Log in

A Multivariate Approach for Mapping Fire Ignition Risk: The Example of the National Park of Cilento (Southern Italy)

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Recent advances in fire management led landscape managers to adopt an integrated fire fighting strategy in which fire suppression is supported by prevention actions and by knowledge of local fire history and ecology. In this framework, an accurate evaluation of fire ignition risk and its environmental drivers constitutes a basic step toward the optimization of fire management measures. In this paper, we propose a multivariate method for identifying and spatially portraying fire ignition risk across a complex and heterogeneous landscape such as the National Park of Cilento, Vallo di Diano, and Alburni (southern Italy). The proposed approach consists first in calculating the fire selectivity of several landscape features that are usually related to fire ignition, such as land cover or topography. Next, the fire selectivity values of single landscape features are combined with multivariate segmentation tools. The resulting fire risk map may constitute a valuable tool for optimizing fire prevention strategies and for efficiently allocating fire fighting resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey RG (2009) Ecosystem geography. Springer, New York

    Book  Google Scholar 

  • Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land cover classes do wildfires prefer? Landsc Ecol 23:241–248

    Article  Google Scholar 

  • Bajocco S, Pezzatti GB, Mazzoleni S, Ricotta C (2010) Wildfire seasonality and land use: when do wildfires prefer to burn? Environ Monit Assess 164:445–452

    Article  CAS  Google Scholar 

  • Bergeron Y, Leduc A, Harvey BD, Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fenn 36:81–95

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16

    Article  Google Scholar 

  • Blasi C, Carranza ML, Frondoni R, Rosati L (2000) Ecosystem classification and mapping: a proposal for Italian landscapes. Appl Veg Sci 3:233–242

    Article  Google Scholar 

  • Bonazountas M, Kallidromitou D, Kassomenos P, Passas N (2005) Forest fire risk analysis. Hum Ecol Risk Assess 11:617–626

    Article  Google Scholar 

  • Catry F, Rego F, Bacão F, Moreira F (2009) Modeling and mapping the occurrence of wildfire ignitions in Portugal. Int J Wildland Fire 18:921–931

    Article  Google Scholar 

  • Chavez PS, Kwarteng AY (1989) Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis. Photogramm Eng Remote Sens 55:339–348

    Google Scholar 

  • Chuvieco E, Cocero D, Riano D, Martin P, Martinez-Vega J, de la Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331

    Article  Google Scholar 

  • Conedera M, Torriani D, Neff C, Ricotta C, Bajocco S, Pezzatti GB (2011) Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to medium fire prone region. For Ecol Manag 261:2179–2187

    Article  Google Scholar 

  • De Angelis A, Bajocco S, Ricotta C (2012) Modelling the phenological niche of large fires with remotely sensed NDVI profiles. Ecol Model 228:106–111

    Article  Google Scholar 

  • European Commission (2011) Forest fires in Europe, 2010. JRC Scientific and Technical Reports, Report no. 11. EUR 24910 EN

  • Hessburg PF, Reynolds KM, Keane RE, James KM, Salter RB (2007) Evaluating wildland fire danger and prioritizing vegetation and fuels treatments. For Ecol Manag 247:1–17

    Article  Google Scholar 

  • Heyerdahl EK, Brubaker LB, Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology 82:660–678

    Article  Google Scholar 

  • Jolly WM (2007) Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. Int J Wildland Fire 16:503–509

    Article  Google Scholar 

  • Keane R, Burgan R, van Wagtendonk J (2001) Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. Int J Wildland Fire 10:301–319

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K (2009) Global Pyrogeography: the current and future distribution of wildfire. PLoS One 4:e5102. doi:10.1371/journal.pone.0005102

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Manly BFJ, Mcdonald LL, Thomas DL (1993) Resource selection by animals: statistical design and analysis for field studies. Chapman & Hall, London

    Book  Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Moggi G (2001) Catalogo della Flora del Cilento (Salerno). Inf Bot Ital 33:1–116

    Google Scholar 

  • Moreira F, Rego FC, Ferriera PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Moreira F, Vaz PJG, Catry FX, Silva JS (2009) Regional variations in wildfire susceptibility of land cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot F, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape—wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–2402

    Article  Google Scholar 

  • National Wildfire Coordinating Group (NWCG) (2012) Glossary of wildland fire terminology, PMS 205. National Wildfire Coordinating Group, Boise, ID

    Google Scholar 

  • Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego FC (2005) Land-cover type and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673

    Article  Google Scholar 

  • Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC (2012) Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manag 275:117–129

    Article  Google Scholar 

  • Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226

    Article  Google Scholar 

  • Pezzatti GB, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant Biosyst 143:609–620

    Article  Google Scholar 

  • Riano D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A (2002) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can J For Res 32:1301–1315

    Article  Google Scholar 

  • Ricotta C, Di Vito S (2014) Modeling the landscape drivers of fire recurrence in Sardinia (Italy). Environ Manag 53:1077–1084

    Article  Google Scholar 

  • Ricotta C, Avena GC, Volpe F (1999) The influence of principal component analysis on the spatial structure of a multispectral dataset. Int J Remote Sens 20:3367–3376

    Article  Google Scholar 

  • Silva JS, Rego F, Fernandes P, Rigolot E (2010) Towards integrated fire management—outcomes of the European Project Fire Paradox. European Forest Institute Research Report 23, Joensuu, Finland

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Ricotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglietta, D., Migliozzi, A. & Ricotta, C. A Multivariate Approach for Mapping Fire Ignition Risk: The Example of the National Park of Cilento (Southern Italy). Environmental Management 56, 157–164 (2015). https://doi.org/10.1007/s00267-015-0494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0494-0

Keywords

Navigation