Skip to main content

Advertisement

Log in

Facial Fat Fitness: A New Paradigm to Understand Facial Aging and Aesthetics

  • Review
  • Facial Surgery
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Traditionally, facial adipose tissue has been perceived and treated as a homogenous volume-occupying subcutaneous depot. However, recent research from across disciplines is converging to reveal a far more anatomically organized and functionally dynamic role of facial adipose tissue. In this narrative review, we will discuss new insights into adipocyte function and facial adipose anatomy that have far-reaching implications for the practice of aesthetic facial plastic surgery. These concepts are synthesized into a “facial fat fitness” model which can be used to explain clinical observations in facial aging and aesthetic surgery. Fat fitness relates to the quality of facial adipose tissue, as opposed to quantity, and describes whether adipose tissue is in a predominantly healthy hyperplastic or unhealthy hypertrophic state. Fat fitness is modulated by lifestyle factors, and may be impacted positively or negatively by facial aesthetic treatments.

Level of Evidence IV

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schneider MR (2014) Coming home at last: dermal white adipose tissue. Exp Dermatol 23:634–635

    Article  PubMed  Google Scholar 

  2. Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V (2014) Defining dermal adipose tissue. Exp Dermatol 23:629–631

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alexander CM, Kasza I, Yen CL et al (2015) Dermal white adipose tissue: a new component of the thermogenic response. J Lipid Res 56:2061–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Longo M, Zatterale F, Naderi J et al (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 20:2358

    Article  CAS  PubMed Central  Google Scholar 

  5. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV (2018) Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27:68–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vishvanath L, Gupta RK (2019) Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Investig 129:4022–4031

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rutkowski JM, Stern JH, Scherer PE (2015) The cell biology of fat expansion. J Cell Biol 208:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghaben AL, Scherer PE (2019) Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 20:242–258

    Article  CAS  PubMed  Google Scholar 

  9. Haluszka D, Lorincz K, Kiss N et al (2016) Diet-induced obesity skin changes monitored by in vivo SHG and ex vivo CARS microscopy. Biomed Opt Express 7:4480–4489

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meeran SM, Singh T, Nagy TR, Katiyar SK (2009) High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice. Toxicol Appl Pharmacol 241:303–310

    Article  CAS  PubMed  Google Scholar 

  11. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Article  CAS  PubMed  Google Scholar 

  12. Crewe C, An YA, Scherer PE (2017) The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig 127:74–82

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sorisky A, Molgat AS, Gagnon A (2013) Macrophage-induced adipose tissue dysfunction and the preadipocyte: should I stay (and differentiate) or should I go? Adv Nutr 4:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Challa TD, Straub LG, Balaz M et al (2015) Regulation of de novo adipocyte differentiation through cross talk between adipocytes and preadipocytes. Diabetes 64:4075–4087

    Article  CAS  PubMed  Google Scholar 

  15. Gustafson B, Nerstedt A, Smith U (2019) Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun 10:2757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Stephens JM (2012) The fat controller: adipocyte development. PLoS Biol 10:e1001436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JY, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Investig 117:2621–2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arner E, Westermark PO, Spalding KL et al (2010) Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59:105–109

    Article  CAS  PubMed  Google Scholar 

  19. Stanford KI, Middelbeek RJ, Townsend KL et al (2015) A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64:2002–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerrero-Juarez CF, Plikus MV (2018) Emerging nonmetabolic functions of skin fat. Nat Rev Endocrinol 14:163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen SX, Zhang LJ, Gallo RL (2019) Dermal white adipose tissue: a newly recognized layer of skin innate defense. J Investig Dermatol 139:1002–1009

    Article  CAS  PubMed  Google Scholar 

  22. Rivera-Gonzalez G, Shook B, Horsley V (2014) Adipocytes in skin health and disease. Cold Spring Harb Perspect Med 4:a015271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Driskell RR, Lichtenberger BM, Hoste E et al (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nicu C, Pople J, Bonsell L, Bhogal R, Ansell DM, Paus R (2018) A guide to studying human dermal adipocytes in situ. Exp Dermatol 27:589–602

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Shao M, Hepler C et al (2019) Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Investig 129:5327–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marangoni RG, Masui Y, Fang F et al (2017) Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 7:4397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wolk K, Sabat R (2016) Adipokines in psoriasis: An important link between skin inflammation and metabolic alterations. Rev Endocr Metab Disord 17:305–317

    Article  CAS  PubMed  Google Scholar 

  28. Yokote K, Hara K, Mori S, Kadowaki T, Saito Y, Goto M (2004) Dysadipocytokinemia in werner syndrome and its recovery by treatment with pioglitazone. Diabetes Care 27:2562–2563

    Article  PubMed  Google Scholar 

  29. Plikus MV, Guerrero-Juarez CF, Ito M et al (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355:748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sramkova V, Koc M, Krauzova E et al (2019) Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. J Physiol Biochem 75:253–262

    Article  CAS  PubMed  Google Scholar 

  31. Ryu J, Loza CA, Xu H et al (2019) Potential roles of adiponectin isoforms in human obesity with delayed wound healing. Cells 8:1134

    Article  CAS  PubMed Central  Google Scholar 

  32. Hassanshahi A, Hassanshahi M, Khabbazi S et al (2019) Adipose-derived stem cells for wound healing. J Cell Physiol 234:7903–7914

    Article  CAS  PubMed  Google Scholar 

  33. Zellner EG, Pfaff MJ, Steinbacher DM (2015) Fat grafting in primary cleft lip repair. Plast Reconstr Surg 135:1449–1453

    Article  CAS  PubMed  Google Scholar 

  34. Kumar R, Griffin M, Adigbli G, Kalavrezos N, Butler PE (2016) Lipotransfer for radiation-induced skin fibrosis. Br J Surg 103:950–961

    Article  CAS  PubMed  Google Scholar 

  35. Siebert A, Goren I, Pfeilschifter J, Frank S (2016) Anti-inflammatory effects of rosiglitazone in obesity-impaired wound healing depend on adipocyte differentiation. PLoS ONE 11:e0168562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Espinoza LC, Silva-Abreu M, Calpena AC et al (2019) Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine 19:115–125

    Article  CAS  PubMed  Google Scholar 

  37. Espinoza LC, Vera-Garcia R, Silva-Abreu M et al (2020) Topical Pioglitazone nanoformulation for the treatment of atopic dermatitis: design, characterization and efficacy in hairless mouse model. Pharmaceutics 12:255

    Article  CAS  PubMed Central  Google Scholar 

  38. Ezure T, Amano S (2007) Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts. BioFactors 31:229–236

    Article  CAS  PubMed  Google Scholar 

  39. Ezure T, Amano S (2011) Negative regulation of dermal fibroblasts by enlarged adipocytes through release of free fatty acids. J Investig Dermatol 131:2004–2009

    Article  CAS  PubMed  Google Scholar 

  40. Allingham PG, Brownlee GR, Harper GS, Pho M, Nilsson SK, Brown TJ (2006) Gene expression, synthesis and degradation of hyaluronan during differentiation of 3T3-L1 adipocytes. Arch Biochem Biophys 452:83–91

    Article  CAS  PubMed  Google Scholar 

  41. Salzer MC, Lafzi A, Berenguer-Llergo A et al (2018) Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175(1575–1590):e1522

    Google Scholar 

  42. Xu Y, Deng M, Cai Y et al (2019) Cell-free fat extract increases dermal thickness by enhancing angiogenesis and extracellular matrix production in nude mice. Aesthet Surg J 40:914–916

    CAS  Google Scholar 

  43. Xu Y, Zhang JA, Xu Y et al (2015) Antiphotoaging effect of conditioned medium of dedifferentiated adipocytes on skin in vivo and in vitro: a mechanistic study. Stem Cells Dev 24:1096–1111

    Article  CAS  PubMed  Google Scholar 

  44. Jin T, Park KY, Seo SJ (2017) Adiponectin upregulates filaggrin expression via SIRT1-mediated signaling in human normal keratinocytes. Ann Dermatol 29:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell LN, Cai L, Johnstone BH, Traktuev DO, March KL, Considine RV (2008) A central role for hepatocyte growth factor in adipose tissue angiogenesis. Am J Physiol Endocrinol Metab 294:E336–344

    Article  CAS  PubMed  Google Scholar 

  46. Dunsmore SE, Rubin JS, Kovacs SO, Chedid M, Parks WC, Welgus HG (1996) Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. J Biol Chem 271:24576–24582

    Article  CAS  PubMed  Google Scholar 

  47. Gille J, Khalik M, Konig V, Kaufmann R (1998) Hepatocyte growth factor/scatter factor (HGF/SF) induces vascular permeability factor (VPF/VEGF) expression by cultured keratinocytes. J Investig Dermatol 111:1160–1165

    Article  CAS  PubMed  Google Scholar 

  48. Wolnicka-Glubisz A, Pecio A, Podkowa D, Plonka PM, Grabacka M (2013) HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS ONE 8:e74883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirobe T, Osawa M, Nishikawa S (2004) Hepatocyte growth factor controls the proliferation of cultured epidermal melanoblasts and melanocytes from newborn mice. Pigment Cell Res 17:51–61

    Article  CAS  PubMed  Google Scholar 

  50. Seeger MA, Paller AS (2015) The roles of growth factors in keratinocyte migration. Adv Wound Care (New Rochelle) 4:213–224

    Article  Google Scholar 

  51. Zhang LJ, Guerrero-Juarez CF, Hata T et al (2015) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347:67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chun TH, Inoue M (2014) 3-D adipocyte differentiation and peri-adipocyte collagen turnover. Methods Enzymol 538:15–34

    Article  CAS  PubMed  Google Scholar 

  53. Lorincz K, Haluszka D, Kiss N et al (2017) Voluntary exercise improves murine dermal connective tissue status in high-fat diet-induced obesity. Arch Dermatol Res 309:209–215

    Article  PubMed  Google Scholar 

  54. Ezure T, Amano S (2015) Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 24:924–929

    Article  CAS  PubMed  Google Scholar 

  55. Kruglikov I, Trujillo O, Kristen Q et al (2016) The facial adipose tissue: a revision. Fac Plast Surg 32:671–682

    Article  CAS  Google Scholar 

  56. Kruglikov IL (2014) General theory of body contouring: 2. Modulation of mechanical properties of subcutaneous fat tissue. J Cosmet Dermatol Sci Appl 4:117–127

    Google Scholar 

  57. Cartwright MJ, Tchkonia T, Kirkland JL (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 42:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rivera-Gonzalez GC, Shook BA, Andrae J et al (2016) Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19:738–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim EJ, Kim YK, Kim JE et al (2011) UV modulation of subcutaneous fat metabolism. J Investig Dermatol 131:1720–1726

    Article  CAS  PubMed  Google Scholar 

  60. Fang CL, Huang LH, Tsai HY, Chang HI (2016) Dermal lipogenesis inhibits adiponectin production in human dermal fibroblasts while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in human skin. Int J Mol Sci 17:1129

    Article  PubMed Central  CAS  Google Scholar 

  61. Yang C, Zhang P, Xing X (2013) Tear trough and palpebromalar groove in young versus elderly adults: a sectional anatomy study. Plast Reconstr Surg 132:796–808

    Article  CAS  PubMed  Google Scholar 

  62. Tower JI, Gordon NA, Paskhover B (2020) Deep cheek fat volumes and midfacial aging. Aesthet Surg J 40:467–475

    Article  PubMed  Google Scholar 

  63. Wollina U, Wetzker R, Abdel-Naser MB, Kruglikov IL (2017) Role of adipose tissue in facial aging. Clin Interv Aging 12:2069–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chon SH, Pappas A (2015) Differentiation and characterization of human facial subcutaneous adipocytes. Adipocyte 4:13–21

    Article  CAS  PubMed  Google Scholar 

  65. Dalle Carbonare L, Manfredi M, Caviglia G et al (2018) Can half-marathon affect overall health? The yin-yang of sport. J Proteom 170:80–87

    Article  CAS  Google Scholar 

  66. Shen Y, Zhou H, Jin W, Lee HJ (2016) Acute exercise regulates adipogenic gene expression in white adipose tissue. Biol Sport 33:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schenck TL, Koban KC, Schlattau A et al (2018) The functional anatomy of the superficial fat compartments of the face: a detailed imaging study. Plast Reconstr Surg 141:1351–1359

    Article  CAS  PubMed  Google Scholar 

  68. Lambros V (2020) Facial aging: a 54-year, three-dimensional population study. Plast Reconstr Surg 145:921–928

    Article  CAS  PubMed  Google Scholar 

  69. Tower JI, Seifert K, Paskhover B (2019) Patterns of superficial midfacial fat volume distribution differ by age and body mass index. Aesthet Plast Surg 43:83–90

    Article  Google Scholar 

  70. Stuzin JM, Baker TJ, Gordon HL (1992) The relationship of the superficial and deep facial fascias: relevance to rhytidectomy and aging. Plast Reconstr Surg 89:441–449 discussion 450-441

    Article  CAS  PubMed  Google Scholar 

  71. McLaughlin T, Abbasi F, Lamendola C, Yee G, Carter S, Cushman SW (2019) Dietary weight loss in insulin-resistant non-obese humans: metabolic benefits and relationship to adipose cell size. Nutr Metab Cardiovasc Dis 29:62–68

    Article  CAS  PubMed  Google Scholar 

  72. Pasarica M, Tchoukalova YD, Heilbronn LK et al (2009) Differential effect of weight loss on adipocyte size subfractions in patients with type 2 diabetes. Obesity (Silver Spring) 17:1976–1978

    Article  CAS  Google Scholar 

  73. Stinkens R, Brouwers B, Jocken JW et al (1985) (2018) Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol 125:1585–1593

    Article  CAS  Google Scholar 

  74. Camell CD, Sander J, Spadaro O et al (2017) Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550:119–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McLaughlin TM, Liu T, Yee G et al (2010) Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obesity (Silver Spring) 18:926–931

    Article  CAS  Google Scholar 

  76. Marion-Letellier R, Savoye G, Ghosh S (2016) Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol 785:44–49

    Article  CAS  PubMed  Google Scholar 

  77. Garaulet M, Hernandez-Morante JJ, Lujan J, Tebar FJ, Zamora S (2006) Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int J Obes (Lond) 30:899–905

    Article  CAS  Google Scholar 

  78. Zampell JC, Aschen S, Weitman ES et al (2012) Regulation of adipogenesis by lymphatic fluid stasis: part I. Adipogenesis, fibrosis, and inflammation. Plast Reconstr Surg 129:825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 94:4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ogiso T, Shiraki T, Okajima K, Tanino T, Iwaki M, Wada T (2002) Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J Drug Target 10:369–378

    Article  CAS  PubMed  Google Scholar 

  81. Zhang B, Tsai PC, Gonzalez-Celeiro M et al (2016) Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Dev 30:2325–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Butcher EO (1953) The penetration of fat and fatty acid into the skin of the rat. J Investig Dermatol 21:43–48

    Article  CAS  PubMed  Google Scholar 

  83. Cizinauskas V, Elie N, Brunelle A, Briedis V (2017) Fatty acids penetration into human skin ex vivo: a TOF-SIMS analysis approach. Biointerphases 12:011003

    Article  PubMed  CAS  Google Scholar 

  84. Nakakura S, Yamamoto M, Terao E et al (2015) Prostaglandin-associated periorbitopathy in latanoprost users. Clin Ophthalmol 9:51–56

    PubMed  Google Scholar 

  85. Liu L, Clipstone NA (2007) Prostaglandin F2alpha inhibits adipocyte differentiation via a G alpha q-calcium-calcineurin-dependent signaling pathway. J Cell Biochem 100:161–173

    Article  CAS  PubMed  Google Scholar 

  86. Sarnoff DS, Gotkin RH (2015) Bimatoprost-induced chemical blepharoplasty. J Drugs Dermatol 14:472–477

    CAS  PubMed  Google Scholar 

  87. Iriarte C, Awosika O, Rengifo-Pardo M, Ehrlich A (2017) Review of applications of microneedling in dermatology. Clin Cosmet Investig Dermatol 10:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sinno S, Wilson S, Brownstone N, Levine SM (2016) Current thoughts on fat grafting: using the evidence to determine fact or fiction. Plast Reconstr Surg 137:818–824

    Article  CAS  PubMed  Google Scholar 

  89. Friedmann DP (2015) A review of the aesthetic treatment of abdominal subcutaneous adipose tissue: background, implications, and therapeutic options. Dermatol Surg 41:18–34

    Article  CAS  PubMed  Google Scholar 

  90. Trelles MA, van der Lugt C, Mordon S, Ribe A, Al-Zarouni M (2010) Histological findings in adipocytes when cellulite is treated with a variable-emission radiofrequency system. Lasers Med Sci 25:191–195

    Article  PubMed  Google Scholar 

  91. Koh EK, Kim JE, Go J et al (2016) Protective effects of the antioxidant extract collected from Styela clava tunics on UV radiationinduced skin aging in hairless mice. Int J Mol Med 38:1565–1577

    Article  PubMed  Google Scholar 

  92. Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T (2017) Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS ONE 12:e0171178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ito N, Seki S, Ueda F (2018) The protective role of astaxanthin for UV-induced skin deterioration in healthy people-a randomized, double-blind, placebo-controlled trial. Nutrients 10:817

    Article  PubMed Central  CAS  Google Scholar 

  94. Tominaga K, Hongo N, Fujishita M, Takahashi Y, Adachi Y (2017) Protective effects of astaxanthin on skin deterioration. J Clin Biochem Nutr 61:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tanaka M, Sugama A, Sumi K et al (2020) Gallic acid regulates adipocyte hypertrophy and suppresses inflammatory gene expression induced by the paracrine interaction between adipocytes and macrophages in vitro and in vivo. Nutr Res 73:58–66

    Article  CAS  PubMed  Google Scholar 

  96. Alsaggar M, Bdour S, Ababneh Q, El-Elimat T, Qinna N, Alzoubi KH (2020) Silibinin attenuates adipose tissue inflammation and reverses obesity and its complications in diet-induced obesity model in mice. BMC Pharmacol Toxicol 21:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakanoi Y, Shuang E, Yamamoto K, et al (2018) Simultaneous intake of Euglena gracilis and vegetables synergistically exerts an anti-inflammatory effect and attenuates visceral fat accumulation by affecting gut microbiota in Mice. Nutrients 10:1417

    Article  PubMed Central  CAS  Google Scholar 

  98. Garibyan L, Moradi Tuchayi S, Javorsky E et al (2020) Subcutaneous fat reduction with injected ice slurry. Plast Reconstr Surg 145:725e–733e

    Article  CAS  PubMed  Google Scholar 

  99. Jalian HR, Avram MM, Garibyan L, Mihm MC, Anderson RR (2014) Paradoxical adipose hyperplasia after cryolipolysis. JAMA Dermatol 150:317–319

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stroumza N, Gauthier N, Senet P, Moguelet P, Nail Barthelemy R, Atlan M (2018) Paradoxical adipose hypertrophy (PAH) after cryolipolysis. Aesthet Surg J 38:411–417

    Article  PubMed  Google Scholar 

  101. Kelly E, Rodriguez-Feliz J, Kelly ME (2016) paradoxical adipose hyperplasia after cryolipolysis: a report on incidence and common factors identified in 510 patients. Plast Reconstr Surg 137:639e–640e

    Article  CAS  PubMed  Google Scholar 

  102. Singh SM, Geddes ER, Boutrous SG, Galiano RD, Friedman PM (2015) Paradoxical adipose hyperplasia secondary to cryolipolysis: an underreported entity? Lasers Surg Med 47:476–478

    Article  PubMed  Google Scholar 

  103. Seaman SA, Tannan SC, Cao Y, Peirce SM, Gampper TJ (2016) Paradoxical adipose hyperplasia and cellular effects after cryolipolysis: a case report. Aesthet Surg J 36:NP6-13

    Article  PubMed  Google Scholar 

  104. Wang E, Kaur R, Jagdeo J (2018) Commentary on: Paradoxical adipose hypertrophy (PAH) after cryolipolysis. Aesthet Surg J 38:418–420

    Article  PubMed  Google Scholar 

  105. Khan M (2019) Complications of cryolipolysis: paradoxical adipose hyperplasia (PAH) and beyond. Aesthet Surg J 39:NP334–NP342

    Article  PubMed  Google Scholar 

  106. Ladha M, Poelman S (2019) Cryolipolysis-induced morphea. JAAD Case Rep 5:300–302

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu M, Chesnut C, Lask G (2019) Overview of kybella (deoxycholic acid injection) as a fat resorption product for submental fat. Fac Plast Surg 35:274–277

    Article  CAS  Google Scholar 

  108. Ramirez MR, Marinaro RE, Warthan ML, Burton CS (2019) Permanent cutaneous adverse events after injection with deoxycholic acid. Dermatol Surg 45:1432–1434

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Ivan Galanin, BA, and Jacob I. Tower, MD, have equity in Adipeau Inc. (New York, NY, USA) which markets skincare products aimed at promoting facial adipose tissue health. No funding was provided or required for the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob I. Tower.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanin, I., Nicu, C. & Tower, J.I. Facial Fat Fitness: A New Paradigm to Understand Facial Aging and Aesthetics. Aesth Plast Surg 45, 151–163 (2021). https://doi.org/10.1007/s00266-020-01933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-020-01933-6

Keywords

Navigation