Skip to main content
Log in

Developing multiple hypotheses in behavioral ecology

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Researchers in behavioral ecology are increasingly turning to research methods that allow the simultaneous evaluation of hypotheses. This approach has great potential to increase our scientific understanding, but researchers interested in the approach should be aware of its long and somewhat contentious history. Also, prior to implementing multiple hypothesis evaluation, researchers should be aware of the importance of clearly specifying a priori hypotheses. This is one of the more difficult aspects of research based on multiple hypothesis evaluation, and we outline and provide examples of three approaches for doing so. Finally, multiple hypothesis evaluation has some limitations important to behavioral ecologists; we discuss two practical issues behavioral ecologists are likely to face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson RP (1985) A variance explanation paradox: when a little is a lot. Psychol Bull 97:129–133

    Article  Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Evol Syst 5:325–383

    Article  Google Scholar 

  • Anderson DR, Burnham KR (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manage 66:912–918

    Article  Google Scholar 

  • Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923

    Article  Google Scholar 

  • Anderson DR, Burnham KP, Gould WR, Cherry S (2001) Concerns about finding effects that are actually spurious. Wildl Soc Bull 29:311–316

    Google Scholar 

  • Bildstein KL (1983) Why white-tailed deer flag their tails. Am Nat 121:709–715

    Article  Google Scholar 

  • Blaustein AR, Risser AC (1976) Interspecific interactions between 3 sympatric species of Kangaroo rats (Dipodomys). Anim Behav 24:381–385

    Article  Google Scholar 

  • Bleich VC, Bowyer RT, Wehausen JD (1997) Sexual segregation in mountain sheep: resources or predation? Wildl Monogr 134:1–50

    Google Scholar 

  • Brown KM (1998) Proximate and ultimate causes of adoption in ring-billed gulls. Anim Behav 56:1529–1543

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback–Leibler information as a basis for strong inference in ecological studies. Wildlife Res 28:111–119

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33:261–304

    Article  Google Scholar 

  • Burnham K, Anderson D, Huyvaert K (2010) AICc model selection in the ecological and behavioral sciences: some background, observations, and comparisons. Behav Ecol Sociobiol. doi:10.1007/s00265-010-1029-6

  • Calhim S, Shi J, Dunbar RIM (2006) Sexual segregation among feral goats: testing between alternative hypotheses. Anim Behav 72:31–41

    Article  Google Scholar 

  • Caro TM (1986) The functions of stotting in Thomson’s gazelles: some tests of the predictions. Anim Behav 34:663–684

    Article  Google Scholar 

  • Chamberlin TC (1890) The method of multiple working hypotheses. Science 15:92–96

    Article  Google Scholar 

  • Chamberlin TC (1897) The method of multiple working hypotheses. J Geol Sci 5:837–848

    Article  Google Scholar 

  • Chatfield C (1995) Model uncertainty, data mining and statistical inference. J R Stat Soc Ser A-Stat Soc 158:419–466

    Article  Google Scholar 

  • Clarkson K, Eden SF, Sutherland WJ, Houston AI (1986) Density dependence and magpie food hoarding. J Anim Ecol 55:111–121

    Article  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  PubMed  CAS  Google Scholar 

  • Congdon J (1974) Effect of habitat quality on distributions of three sympatric species of desert rodents. J Mammal 55:659–662

    Article  Google Scholar 

  • Cox DR, Snell EJ (1989) The analysis of binary data, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Daly M, Jacobs LF, Wilson MI, Behrends PR (1992) Scatter hoarding by Kangaroo rats (Dipodomys merriami) and pilferage from their caches. Behav Ecol 3:102–111

    Article  Google Scholar 

  • Davis RH (2006) Strong inference-rationale or inspiration? Perspect Biol Med 49:238–249

    Article  PubMed  Google Scholar 

  • Dochtermann NA, Jenkins SH (2007) Behavioural syndromes in Merriam’s kangaroo rats (Dipodomys merriami): a test of competing hypotheses. Proc R Soc B 274:2343–2349

    Article  PubMed  Google Scholar 

  • Doerr ED, Doerr VAJ (2006) Comparative demography of treecreepers: evaluating hypotheses for the evolution and maintenance of cooperative breeding. Anim Behav 72:147–159

    Article  Google Scholar 

  • Eberhardt LL (2003) What should we do about hypothesis testing? J Wildl Manage 67:241–247

    Article  Google Scholar 

  • Elliott LP, Brook BW (2007) Revisiting chamberlin: multiple working hypotheses for the 21st century. Bioscience 57:608–614

    Article  Google Scholar 

  • Emlen ST, Reeve HK, Sherman PW, Wrege PH, Ratnieks FLW, Shellmanreeve J (1991) Adaptive versus nonadaptive explanations of behaviour: the case of alloparental helping. Am Nat 138:259–270

    Article  Google Scholar 

  • Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, London

    Google Scholar 

  • Forstmeier W, Schielzeth H (2010) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol. doi:10.1007/s00265-010-1038-5

  • Garamszegi LZ (2010) Information-theoretic approaches to statistical analysis in behavioural ecology: an introduction. Behav Ecol Sociobiol. doi:10.1007/s00265-010-1028-7

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Guthery FS, Brennan LA, Peterson MJ, Lusk JJ (2005) Information theory in wildlife science: critique and viewpoint. J Wildl Manage 69:457–465

    Article  Google Scholar 

  • Hawbecker AC (1940) The burrowing and feeding habits of Dipoclomys venustus. J Mammal 21:388–396

    Article  Google Scholar 

  • Hilborn R, Stearns SC (1982) On inference in ecology and evolutionary biology: the problem of multiple causes. Acta Biotheor 31:145–164

    Article  PubMed  CAS  Google Scholar 

  • Holekamp KE, Sherman PW (1989) Why male ground squirrels disperse. Amer Sci 77:232–239

    Google Scholar 

  • Hoogland JL (1981) The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae: Cynomys leucurus and Cynomys ludovicianus). Ecology 62:252–272

    Article  Google Scholar 

  • Hoogland JL, Sherman PW (1976) Advantages and disadvantages of bank swallow (Riparia riparia) coloniality. Ecol Monogr 46:33–58

    Article  Google Scholar 

  • Hurvich CM, Tsai CL (1990) The impact of model selection on inference in linear regression. Am Stat 44:214–217

    Article  Google Scholar 

  • Jacobs LF (1992) Memory for cache locations in Merriam kangaroo rats. Anim Behav 43:585–593

    Article  Google Scholar 

  • Jacobs LF, Liman ER (1991) Gray squirrels remember the locations of buried nuts. Anim Behav 41:103–110

    Article  Google Scholar 

  • Jamieson IG (1989) Behavioral heterochrony and the evolution of birds helping at the nest: an unselected consequence of communal breeding. Am Nat 133:394–406

    Article  Google Scholar 

  • Jenkins SH (2004) How science works: evaluating evidence in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Jenkins SH, Rothstein A, Green WCH (1995) Food hoarding by Merriam’s kangaroo rats—a test of alternative hypotheses. Ecology 76:2470–2481

    Article  Google Scholar 

  • Jenkins SH, Peters RA (1992) Spatial patterns of food storage by Merriam kangaroo rats. Behav Ecol 3:60–65

    Article  Google Scholar 

  • Johnson JG (1990) Method of multiple working hypotheses: a chimera. Geology 18:44–45

    Article  Google Scholar 

  • Johnson JB (2002) Divergent life histories among populations of the fish Brachyrhaphis rhabdophora: detecting putative agents of selection by candidate model analysis. Oikos 96:82–91

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kelly CD (2006) Replicating empirical research in behavioral ecology: how and why it should be done but rarely ever is. Q Rev Biol 81:221–236

    Article  PubMed  Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003) Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypotheses. Ecol Lett 6:35–40

    Article  Google Scholar 

  • Krebs CJ (2000) Hypothesis testing in ecology. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology. Columbia University Press, New York, pp 1–14

    Google Scholar 

  • Liley S, Creel S (2008) What best explains vigilance in elk: characteristics of prey, predators, or the environment? Behav Ecol 19:245–254

    Article  Google Scholar 

  • Lipton P (2005) Testing hypotheses: prediction and prejudice. Science 307:219–221

    Article  PubMed  CAS  Google Scholar 

  • Maddala GS (1983) Limited-dependent and qualitative variables in econometrics. Cambridge University Press, Cambridge

    Google Scholar 

  • Magee L (1990) R2 measures based on Wald and likelihood ratio joint significance test. Am Stat 44:250–253

    Article  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • O’Donohue W, Buchanan JA (2001) The weaknesses of strong inference. Behav Philos 29:1–20

    Google Scholar 

  • Oreskes N (1999) The rejection of continental drift. Oxford University Press, New York

    Google Scholar 

  • Platt JR (1964) Strong inference. Science 146:347–353

    Article  PubMed  CAS  Google Scholar 

  • Price MV, Mittler JE (2006) Cachers, scavengers, and thieves: a novel mechanism for desert rodent coexistence. Am Nat 168:194–206

    Article  PubMed  Google Scholar 

  • Proctor RW, Capaldi EJ (2001) Improving the science education of psychology students: better teaching of methodology. Teach Psychol 28:173–181

    Article  Google Scholar 

  • Quinn JF, Dunham AE (1983) On hypothesis testing in ecology and evolution. Am Nat 122:602–617

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Railsback LB (1990) “Method of multiple working hypotheses: a chimera”—comment. Geology 18:917–918

    Article  Google Scholar 

  • Reichman OJ, Fattaey A, Fattaey K (1986) Management of sterile and moldy seeds by a desert rodent. Anim Behav 34:221–225

    Article  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Salt GW (1983) Roles: their limits and responsibilities in ecological and evolutionary research. Am Nat 122:697–705

    Article  Google Scholar 

  • Shaw WT (1934) The ability of the giant kangaroo rat as a harvester and storer of seeds. J Mammal 15:275–286

    Article  Google Scholar 

  • Sherman PW (1977) Nepotism and evolution of alarm calls. Science 197:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Simberloff D (1983) Competition theory, hypothesis testing, and other community ecological buzzwords. Am Nat 122:626–635

    Article  Google Scholar 

  • Stamps J, McElreath R, Eason P (2005) Alternative models of conspecific attraction in flies and crabs. Behav Ecol 16:974–980.

    Article  Google Scholar 

  • Steidl RJ (2006) Model selection, hypothesis testing, and risks of condemning analytical tools. J Wildl Manage 70:1497–1498

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Stokke BG, Hafstad I, Rudolfsen G, Moksnes A, Moller AP, Roskaft E, Soler M (2008) Predictors of resistance to brood parasitism within and among reed warbler populations. Behav Ecol 19:612–620

    Article  Google Scholar 

  • Symonds MRE, Johnson CN (2008) Species richness and evenness in Australian birds. Am Nat 171:480–490

    Article  PubMed  Google Scholar 

  • Tinbergen N (1963) On aims and methods of ethology. Zeit Tierpsych 20:410–433

    Article  Google Scholar 

  • Tinbergen N, Impekoven M, Franck D (1967) An experiment on spacing-out as a defence against predation. Behaviour 28:307–321

    Article  Google Scholar 

  • Vanderwall SB (1994) Seed fate pathways of antelope bitterbrush: dispersal by seed-caching yellow pine chipmunks. Ecology 75:1911–1926

    Article  Google Scholar 

  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

    Article  PubMed  Google Scholar 

  • Wolff JO (2000) In my opinion—reassessing research approaches in the wildlife sciences. Wildl Soc Bull 28:744–750

    Google Scholar 

  • Zhang P (1992) Inference after variable selection in linear regression models. Biometrika 79:741–746

    Article  Google Scholar 

Download references

Acknowledgments

We thank Laszlo Garamszegi for his encouragement in writing this manuscript, participants of the “ABCD” statistical symposium held at the 2008 meeting of the International Society for Behavioral Ecology for vigorous and insightful discussion, and three anonymous reviewers for critical and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ned A. Dochtermann.

Additional information

Communicated by L. Garamszegi

This contribution is part of the Special Issue “Model selection, multimodel inference and information-theoretic approaches in behavioural ecology” (see Garamszegi 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dochtermann, N.A., Jenkins, S.H. Developing multiple hypotheses in behavioral ecology. Behav Ecol Sociobiol 65, 37–45 (2011). https://doi.org/10.1007/s00265-010-1039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-1039-4

Keywords

Navigation