Skip to main content
Log in

All-offspring dispersal in a tropical mammal with resource defense polygyny

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

In polygynous mammals, males are usually responsible for gene flow while females are predominantly philopatric. However, there is evidence that in a few mammalian species female offspring may disperse to avoid breeding with their father when male tenure exceeds female age at maturity. We investigated offspring dispersal and local population structure in the Neotropical bat Lophostoma silvicolum. The mating system of this species is resource defense polygyny, with the resource being active termite nests, excavated by single males, which are then joined by females. We combined field observations of 14 harems during 3 years and data about the genetic structure within and between these groups, calculated with one mitochondrial locus and nine nuclear microsatellite loci. The results show that both male and female offspring disperse before maturity. In addition, we estimated life span of excavated termite nests and the duration they were occupied by the same male. Our findings suggest that long male tenure of up to 30 months is indeed a likely cause for the observed dispersal by female offspring that can reach maturity at a low age of 6 months. We suggest that dispersal by offspring of both sexes may occur quite frequently in polygynous tropical bats and thus generally may be more common in mammals than previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banks SC, Skerratt LF, Taylor AC (2002) Female dispersal and relatedness structure in common wombats (Vombatus ursinus). J Zool 256:389–399

    Article  Google Scholar 

  • Barclay RMR, Ulmer J, MacKenzee CJA, Thompson MS, Olson L, McCool J, Cropey EE, Poll G (2004) Variation in the reproductive rate of bats. Can J Zool 82:688–693

    Article  Google Scholar 

  • Belwood JJ (1988) The influence of bat predation on calling behaviour in Neotropical forest katydids (Insecta: Orthoptera: Tettigoniidae). University of Florida, Gainesville

  • Bockholdt C (1998) Hangplatzwahl, Aktivitätsrhythmik und Aktionsraum der neotropischen Fledermaus Tonatia silvicola (D’Orbigny, 1836). Fakultät für Biologie. Universität Freiburg, Freiburg, pp 94

  • Bradley BJ, Doran-Sheehy DM, Lukas D, Boesch C, Vigilant L (2004) Dispersed male networks in western gorillas. Curr Biol 14:510–513

    Article  PubMed  CAS  Google Scholar 

  • Brooke AP (1997) Social organization and foraging behaviour of the fishing bat, Noctilio leporinus (Chiroptera:Noctilionidae). Ethology 103:421–436

    Article  Google Scholar 

  • Burland TM, Worthington-Wilmer JW (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biol Rev 76:389–409

    Article  PubMed  CAS  Google Scholar 

  • Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc R Soc Lond B 266:975–980

    Article  Google Scholar 

  • Burland TM, Barratt EM, Nichols RA, Racey PA (2001) Mating patterns, relatedness and the basis of natal philopatry in the brown long-eared bat, Plecotus auritus. Mol Ecol 10:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720

    Article  Google Scholar 

  • Clarke AL, Saether B-E, Roskraft E (1997) Sex biases in avain dispersal: a reappraisal. Oikos 79:429–438

    Article  Google Scholar 

  • Clifford SL, Anthony NM, Bawe-Johnson M, Abernethy KA, Tutin CEG, White LJT, Bermejo M, Goldsmith ML, McFarland K, Jeffery KJ, Bruford MW, Wickings EJ (2004) Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla). Mol Ecol 13:1551–1565

    Article  PubMed  CAS  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, Oxford, UK

    Google Scholar 

  • Clutton-Brock TH (1989a) Female transfer and inbreeding avoidance in social mammals. Nature 337:70–72

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock TH (1989b) Mammalian mating systems. Proc R Soc Lond B 236:339–372

    Article  PubMed  CAS  Google Scholar 

  • Dechmann DKN, Garbely E, Kerth G, Garner TWJ (2002) Highly polymorphic microsatellites for the study of the round-eared bat, Tonatia silvicola (d’Orbigny). Conservation Genetics 3:455–458

    Article  CAS  Google Scholar 

  • Dechmann DKN, Kalko EKV, Kerth G (2004) Ecology of an exceptional roost: energetic benefits could explain why the bat Lophostoma silvicolum roosts in active termite nests. Evol Ecol Res 6:1037–1050

    Google Scholar 

  • Dechmann DKN, Kalko EKV, König B, Kerth G (2005) Mating system of a Neotropical roost making bat: the white-throated, round-eared bat, Lophostoma silvicolum (Chiroptera: Phyllostomidae). Behav Ecol Sociobiol 58:316–325

    Article  Google Scholar 

  • Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192

    Article  Google Scholar 

  • Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: Evidence from field data and microsatellite patterns. Proc R Soc Lond B Biol Sci 264:127–132

    Article  CAS  Google Scholar 

  • Goudet J, Raymond M, de Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Hammond RL, Lawson Handley LJ, Wineey BJ, Bruford MW, Perrin N (2006) Genetic evidence for female-biased dispersal and gene flow in a polygynous primate. Proc R Soc B 273:479–484

    Article  PubMed  CAS  Google Scholar 

  • Heckel G, Von Helversen O (2003) Genetic mating system and the significance of harem associations in the bat Saccopteryx bilineata. Mol Ecol 12:219–227

    Article  PubMed  Google Scholar 

  • Heckel G, Voigt CC, Mayer F, Von Helversen O (1999) Extra-harem paternity in the white-lined bat Saccopteryx bilineata (Emballonuridae). Behaviour 136:1173–1185

    Article  Google Scholar 

  • Kalko EKV, Handley CO, Handley D (1996) Organization, diversity, and long-term dynamics of a Neotropical bat community. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic Press, San Diego, pp 503–553

    Google Scholar 

  • Kalko EKV, Friemel D, Handley CO, Schnitzler HU (1999) Roosting and foraging behavior of two Neotropical gleaning bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae). Biotropica 31:344–353

    Article  Google Scholar 

  • Kalko EKV, Ueberschaer K, Dechmann DKN (2006) Roost structure, modification, and availability in the white-throated, round-eared bat, Lophostoma silvicolum (Phyllostomidae) living in active termite nests. Biotropica 38:1–7

    Article  Google Scholar 

  • Kerth G, König B (1996) Transponder and an infrared-videocamera as methods used in a field study on the social behaviour of Bechstein’s Bat (Myotis bechsteinii). Myotis 34:27–34

    Google Scholar 

  • Kerth G, König B (1999) Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136:1187–1202

    Article  Google Scholar 

  • Kerth G, Morf L (2004) Behavioural and genetic data suggest that Bechstein’s bats predominantly mate outside the breeding habitat. Ethology 110:987–999

    Article  Google Scholar 

  • Kerth G, Mayer F, König B (2000) Mitochondrial DNA (mtDNA) reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800

    Article  PubMed  CAS  Google Scholar 

  • Kerth G, Mayer F, Petit E (2002a) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Kerth G, Safi K, Konig B (2002b) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52:203–210

    Article  Google Scholar 

  • Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein’s bat. Conservation Genetics 4:491–499

    Article  CAS  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  Google Scholar 

  • Lang AB, Kalko EKV, Römer H, Bockholdt C, Dechmann DKN (2006) Activity levels of bats and katydids in relation to the lunar cycle. Oecologia 146:659–666

    Article  PubMed  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • McCracken GF, Bradbury JW (1981) Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behav Ecol Sociobiol 8:11–34

    Article  Google Scholar 

  • McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, London, pp 321–357

    Google Scholar 

  • Moore J, Ali R (1984) Are dispersal and inbreeding avoidance related. Anim Behav 32:94–112

    Article  Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405

    Article  Google Scholar 

  • Müllenbach R, Lagoda PJL, Welter C (1989) An efficient salt chloroform extraction method of DNA from blood and tissues. Trends Genet 5:391

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ortega J, Maldonado JE, Arita HT, Wilkinson GS, Fleischer RC (2002) Characterization of microsatellite loci in the Jamaican fruit-eating bat Artibeus jamaicensis and cross-species amplification. Mol Ecol Notes 2:462–464

    Article  CAS  Google Scholar 

  • Ortega J, Maldonado JE, Wilkinson GS, Arita HT, Fleischer RC (2003) Male dominance, paternity, and relatedness in the Jamaican fruit-eating bat (Artibeus jamaicensis). Mol Ecol 12:2409–2415

    Article  PubMed  Google Scholar 

  • Perrin N, Mazalov V (1999) Dispersal and inbreeding avoidance. Am Nat 154:282–292

    Article  PubMed  Google Scholar 

  • Petit E, Balloux F, Goudet J (2001) Sex-biased dispersal in a migratory bat: a characterization using sex-specific demographic parameters. Evolution 55:635–640

    Article  PubMed  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic-markers. Evolution 43:258–275

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reid FA (1997) A field guide to the mammals of Central America and Southeast Mexico. Oxford University Press, New York, Oxford

    Google Scholar 

  • Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000a) Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum. Mol Ecol 9:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000b) Parentage, reproductive success and breeding behaviour in the greater horseshoe bat (Rhinolophus ferrumequinum). Proc R Soc Lond, B Biol Sci 267:545–551

    Article  CAS  Google Scholar 

  • Rossiter SJ, Jones G, Ransome RD, Barratt EM (2002) Relatedness structure and kin-biased foraging in the greater horseshoe bat (Rhinolophus ferrumequinum). Behav Ecol Sociobiol 51:510–518

    Article  Google Scholar 

  • Rossiter SJ, Ransome RD, Faulkes CG, Le Comber SC, Jones G (2005) Mate fidelity and intra-lineage polygyny in greater horseshoe bats. Nature 437:408–411

    Article  PubMed  CAS  Google Scholar 

  • Ruckstuhl KE, Neuhaus P (2000) Sexual segregation in ungulates: a new approach. Behaviour 137:361–377

    Article  Google Scholar 

  • Schneider S, Roessli D, Escoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sedgeley JA, O’Donnell CFJ (1999) Roost selection by the long-tailed bat, Chalinolobus tuberculatus, in temperate New Zealand rainforest and its implications for the conservation of bats in managed forests. Biol Conserv 88:261–276

    Article  Google Scholar 

  • Seielstad MT, Minch E, Cavalli-Sforza LL (1998) Genetic evidence for a higher female migration rate in humans. Nat Genet 20:278–280

    Article  PubMed  CAS  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton Press, Princeton

    Google Scholar 

  • Storz JF, Bhat HR, Kunz TH (2000) Social structure of a polygynous tent-making bat, Cynopterus sphinx (Megachiroptera). J Zool 251:151–165

    Article  Google Scholar 

  • Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution 55:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Vonhof MJ, Whitehead H, Fenton MB (2004) Analysis of Spix’s disc-winged bat association patterns and roosting home ranges reveal a novel social structure among bats. Anim Behav 68:507–521

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilkinson GS (1985) The social-organization of the common vampire bat 2. Mating system, genetic-structure, and relatedness. Behav Ecol Sociobiol 17:123–134

    Google Scholar 

  • Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-Loop MtDNA. Genetics 128:607–617

    PubMed  CAS  Google Scholar 

  • Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D.loop region of bat mitochondrial DNA. Genetics 146:1035–1048

    PubMed  CAS  Google Scholar 

  • Williams DA, Rabenold KN (2005) Male-biased dispersal, female philopatry, and routes to fitness in a social corvid. J Anim Ecol 74:150–159

    Article  Google Scholar 

  • Worthington-Wilmer J, Hall L, Barratt E, Moritz C (1999) Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas). Evolution 53:1582–1591

    Article  Google Scholar 

Download references

Acknowledgements

The Roche Research Foundation and the ZUNIV-Fonds zur Förderung des Akademischen Nachwuchses (FAN) financed Dina Dechmann during this study. The Julius–Klaus–Stiftung (Zürich) and the Brachet Foundation (Belgium) financed the genetic analyses, which were carried out with much help from J. Garbely. We want to thank the Smithsonian Tropical Research Institute (STRI) and the National Authority for the Environment (ANAM) for research permits and the staff of Barro Colorado Island, especially the game wardens for logistical support. The following people helped with fieldwork, development of equipment and/or with data analysis: A. Beck, M. Demir, S. Heucke, M. Kalka, R. Kays, J. Mandel, F. Neuhäuser-Wespy, K. Safi-Widmer, A. Schulz, M. Weinbeer, S. Wetterich, and especially K. Safi, A. Lang, S. Spehn, and C. Weise. We also thank M. Brigham, F. Mayer, A. McElligott, E. Petit, K. Safi, S. Spehn, and C. Voigt for valuable comments about the manuscript and B. König for her continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina K. N. Dechmann.

Additional information

Communicated by G. Wilkinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechmann, D.K.N., Kalko, E.K.V. & Kerth, G. All-offspring dispersal in a tropical mammal with resource defense polygyny. Behav Ecol Sociobiol 61, 1219–1228 (2007). https://doi.org/10.1007/s00265-007-0352-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-007-0352-z

Keywords

Navigation